Lecture 8:
Programming Languages

25

20
"
o UL N

15 TVAAN MM
[\ I J\

10

5

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

0

== C === Python Java == C++ == C# == Visual Basic JavaScript == Assembly language == PHP SQL

Programming

- it's hard to do the programming to get something done
- details are hard to get right, very complicated, finicky
not enough skilled people to do what is needed

therefore, enlist machines to do some of the work
— leads to programming languages

- it's hard to manage the resources of the computer
hard to control sequences of operations
in ancient times, high cost of having machine be idle

therefore, enlist machines to do some of the work
— leads to operating systems

Evolution of programming languages

« 1940's: machine level

use binary or equivalent notations for actual numeric values

- 1950's: "assembly language"

loop

done

sum

names for instructions: ADD instead of 0110101, etc.

names for locations: assembler keeps track of where things are in memory;
translates this more humane language into machine language

this is the level used in the "toy" machine
needs total rewrite if moved to a different kind of CPU

get # read a number

ifzero done # no more input if number is zero assenﬂﬂylang
add sum # add in accumulated sum program
store sum # store new value back in sum

goto loop # read another number 1

load sum # print sum

print assembler
stop

0 # sum will be 0 when program starts 1

binary instrs

Evolution of programming languages, 1960's

- "high level" languages: Fortran, Cobol, Basic
— write in a more natural notation, e.g., mathematical formulas
— a program ("compiler”, "translator") converts into assembler
— potential disadvantage: lower efficiency in use of machine

— enormous advantages:
accessible to much wider population of users
portable: same program can be translated for different machines
more efficient in programmer time

sum = 0 Fortran [)rogram
10 read(5,*) num
if (num .eq. 0) goto 20 compiler
sum = sum + num
goto 10
20 write(6,*) sum assembler
stop 1

end binary instrs

Evolution of programming languages, 1970's

- "system programming" languages: C
— efficient and expressive enough to take on any programming task
writing assemblers, compilers, operating systems
— a program ("compiler", "translator") converts into assembler
— enormous advantages:
accessible to much wider population of programmers

portable: same program can be translated for different machines
faster, cheaper hardware helps make this happen

C program
#include <stdio.h>
main () { C compiler
int num, sum = 0;
while (scanf("%d", &num) !'= -1 && num !'= 0) =
assembler
sum += num;
printf ("$d\n", sum); 1

} binary instrs

C code compiled to assembly language (x86, Mac)

Ltmp2:
movl $0, -8 (%rbp)

#include <stdio.h> movl $0, -12(%rbp)

main () { jmp LBB1 2
int num, sum = 0; LBB1_1:
movl -12 (%rbp), %eax
while (scanf("%d", &num) '= -1 movl -8 (%rbp) , %ecx

addl %$eax, %ecx

&& num 1= 0) movl %ecx, -8(%rbp)
sum = sum + num; LBB1 2:

printf ("$d\n", sum); leaq -12 (%$rbp) , %rax

xorb %cl, %cl
} leaqg L _.str(%rip), %rdx

movq srdx, %rdi
movq %rax, 3%rsi
movb %cl, %al
callqg _scanf

(You are not expected to movl %eax, Secx

understand this!) cmpl $-1, %ecx

je LBB1 4
movl -12 (%rbp), %eax
cmpl $0, %eax
jne LBB1 1
LBBl 4:

Evolution of programming languages, 1980's

- "object-oriented" languages: C++

— Dbetter control of structure of really large programs
better internal checks, organization, safety

— a program ("compiler", "translator") converts into assembler or C

— enormous advantages:
portable: same program can be translated for different machines
faster, cheaper hardware helps make this happen

#include <iostream>

main() {

int num, sum = 0;

while (cin >> num && num '= 0)

sum += num;
cout << sum << endl;

Bjarne Stroustrup
1950-

Evolution of programming languages, 1990's

- "scripting", Web, ...:
Java, Perl, Python, Ruby, Visual Basic, JavaScript, ...

— write big programs by combining components already written
— often based on "virtual machine": simulated, like fancier toy computer

— enormous advantages:
portable: same program can be translated for different machines
faster, cheaper hardware helps make this happen

Java (1995)

import java.util.¥*;
class Addup {
public static void main (String [] args) {
Scanner keyboard = new Scanner (System.in);
int num, sum;
sum = 0;
num = keyboard.nextInt() ;
while (num !'= 0) {
sum = sum + num;
num = keyboard.nextInt();

System.out.println(sum) ;

James Gosling
1955-

JavaScript (1995)

var sum = 0; // javascript
var num = prompt ("Enter new value, or 0 to end")
while (num '= 0) {

sum = sum + parselInt (num)

num = prompt ("Enter new value, or 0 to end")

}

alert("Sum = " + sum)

' '/}
1111
11 .Alll”ll

Brendan Eich
1961 -

Python (1990)

sum = 0

while num '= '0':

sum = sum + int (num)
num = input ()
print (sum)

Guido van Rossum
1956-

Why so many programming languages?

every language is a tradeoff among competing pressures
— reaction to perceived failings of others; personal taste

- notation is important

— "Language shapes the way we think and determines what we can think
about."
Benjamin Whorf

— the more natural and close to the problem domain, the easier it is to get
the machine to do what you want

- higher-level languages hide differences between machines and
between operating systems

- we can define idealized "machines" or capabilities and have a
program simulate them -- "virtual machines"

— programming languages are another example of Turing equivalence

