
Lecture 3: Bits, Bytes, Binary

 Bits, bytes, binary numbers, 
 and the representation of information

•  computers represent, process, store, copy, and transmit
everything as numbers
–  hence "digital computer"

•  the numbers can represent anything
–  not just numbers that you might do arithmetic on

•  the meaning depends on context
–  as well as what the numbers ultimately represent
–  e.g., numbers coming to your computer or phone from your

wi-fi connection could be email, movies, music, documents,
apps, Zoom meeting, ...

Analog versus Digital

•  analog: "analogous" or "the analog of"
–  smoothly or continuously varying values
–  volume control, dimmer, faucet, steering wheel
–  value varies smoothly with something else

no discrete steps or changes in values
small change in one implies small change in another
infinite number of possible values

–  the world we perceive is largely analog
•  digital: discrete values

–  only a finite number of different values
–  a change in something results in sudden change
 from one discrete value to another

digital speedometer, digital watch, push-button radio tuner, …
–  values are represented as numbers

Transducers

•  devices that convert from one representation to another
–  microphone
–  loudspeaker / earphones
–  camera / scanner
–  printer / screen
–  keyboard
–  mouse
–  touch screen
–  etc.

•  something is usually lost by conversion (in each direction)
–  the ultimate copy is not as good as the original

Digital pictures

•  divide the picture up into a grid of little rectangles (“pixels”)
•  assign a different numeric value to each different color value
•  the finer the grid and the finer the color distinctions,
 the more accurate the representation will be

Digital sound

•  need to measure intensity/loudness often enough
 and accurately enough that we can reconstruct it
 well enough
•  higher frequency = higher pitch
•  human ear can hear ~ 20 Hz to 20 KHz

–  taking samples at twice the highest frequency is
 good enough (Nyquist)

•  CD audio usually uses
–  44,100 samples / second
–  accuracy of 1 in 65,536 (= 2^16) distinct levels
–  two samples at each time for stereo
–  data rate is 44,100 x 2 x 16 bits/sample
 = 1,411,200 bits/sec = 176,400 bytes/sec ~ 10.6 MB/minute

•  MP3 audio compresses by clever encoding and removal of sounds
that won't really be heard
–  data rate is ~ 1 MB/minute

A review of how decimal numbers work
•  how many digits?

we use 10 digits for counting: "decimal" numbers are natural for us
other schemes show up in some areas

clocks use 12, 24, 60; calendars use 7, 12
other cultures use other schemes (quatre-vingts)

•  what if we want to count to more than 10?
0 1 2 3 4 5 6 7 8 9

1 decimal digit represents 1 choice from 10; counts 10 things; 10 distinct values
00 01 02 … 10 11 12 … 20 21 22 … 98 99

2 decimal digits represents 1 choice from 100; 100 distinct values
we usually elide zeros at the front

000 001 … 099 100 101 … 998 999
3 decimal digits …

•  decimal numbers are shorthands for sums of powers of 10
1492 = 1 x 1000 + 4 x 100 + 9 x 10 + 2 x 1
 = 1 x 103 + 4 x 102 + 9 x 101 + 2 x 100

•  counting in "base 10", using powers of 10

 Binary numbers: only use the digits 0 and 1  
 to represent numbers

•  just like decimal except there are only two digits: 0 and 1

•  everything is based on powers of 2 (1, 2, 4, 8, 16, 32, …)
–  instead of powers of 10 (1, 10, 100, 1000, …)

•  counting in binary or base 2:
 0 1

1 binary digit represents 1 choice from 2; counts 2 things; 2 distinct values
 00 01 10 11

2 binary digits represents 1 choice from 4; 4 distinct values
 000 001 010 011 100 101 110 111

3 binary digits …
•  binary numbers are shorthands for sums of powers of 2

 11011 = 1 x 16 + 1 x 8 + 0 x 4 + 1 x 2 + 1 x 1
 = 1 x 24 + 1 x 23 + 0 x 22 + 1 x 21 + 1 x 20

•  counting in "base 2", using powers of 2

Binary (base 2) arithmetic

•  works like decimal (base 10) arithmetic, but simpler

•  addition:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

•  subtraction, multiplication, division are analogous

Converting binary to decimal

from right to left:
 if bit is 1 add corresponding power of 2
 i.e. 20, 21, 22, 23

(rightmost power is zero)

1101 = 1 x 20 + 0 x 21 + 1 x 22 + 1 x 23

 = 1 x 1 + 0 x 2 + 1 x 4 + 1 x 8
 = 13

Converting decimal to binary

repeat while the number is > 0:
 divide the number by 2
 write the remainder (0 or 1)
 use the quotient as the number and repeat
the answer is the resulting sequence
 in reverse (right to left) order

 divide 13 by 2, write "1", number is 6
 divide 6 by 2, write "0", number is 3
 divide 3 by 2, write "1", number is 1
 divide 1 by 2, write "1", number is 0
 answer is 1101

Decimal to binary conversion in Python

def	dectobinary(num):	
		if	num	==	0:	
				return	"0"	
		binary	=	""	
		while	num	>	0:	
				remainder	=	str(num	%	2)	
				binary	=	binary	+	remainder	
				num	//=	2	
		return	binary[::-1]	

while	True:	
		num	=	input("Enter	decimal	number:	")	
		bin	=	dectobinary(int(num))	
		print("Binary	representation	of	"	+	num	+	"	is	"	+	bin)	

