Lecture 2: What is a computer?

Hardware: tangible devices and gadgets

- how computers represent and process information
 - universal digital representation of information:
 everything is represented as numbers
 - bits, bytes, binary numbers
- a computer is a universal digital processor
 - it stores data and instructions in the same memory
 - the instructions are numbers
 - it's a general purpose machine:
 change the numbers and it does something different
 - your phone is a computer
- hardware has been getting smaller, cheaper, faster exponentially for 60+ years

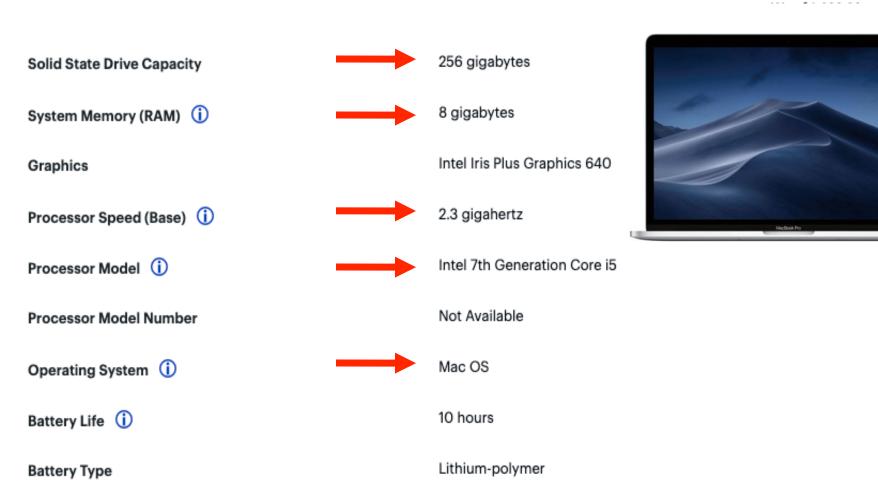
What's in a computer?

- logical or functional organization: "architecture"
 - what the pieces are, what they do, how they work
 - how they are connected, how they work together
 - what their functional properties are

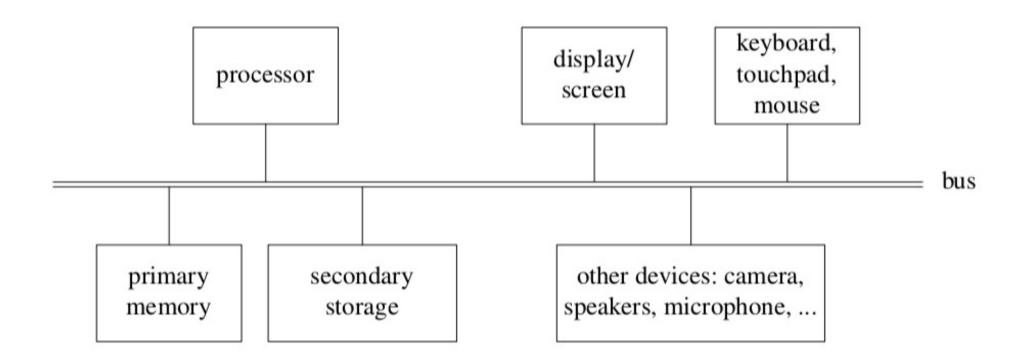
physical structure

what they look like, how they are made

major pieces


- processor ("central processing unit" or CPU)
 does the work, controls the rest
- primary memory (RAM = random access memory)
 stores instructions and data while computer is running
- secondary memory/storage (disk, drive, SSD)
 stores everything even when computer is turned off
- other devices ("peripherals")

Freshman SCI computer for class of 2023

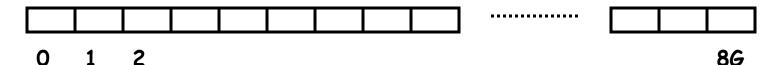

Apple - MacBook Air 13.3" Laptop with Touch ID - Intel Core i5 - 8GB Memory - 256GB Solid State Drive (Latest Model) - Space Gray

Model: MVFJ2LL/A SKU: 6356923

§ Price Match Guarantee
\$1,099.99 c
Save \$200

Block diagram of a typical laptop computer

Processor (CPU, or Central Processing Unit)

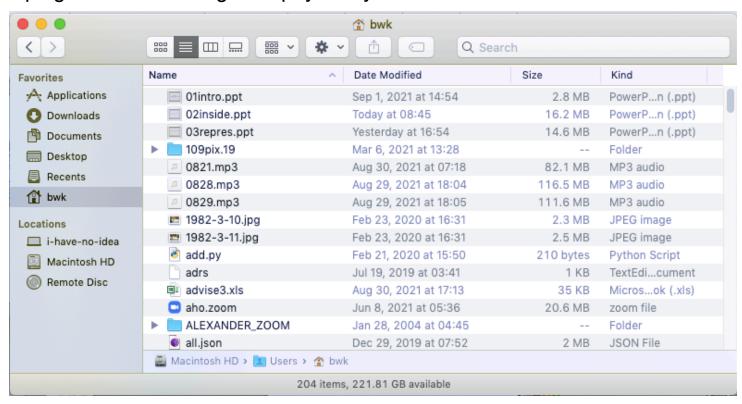

- can perform a small set of basic operations ("instructions")
 - arithmetic: add, subtract, multiply, divide, ...
 - memory access:
 fetch information from memory, store results back into memory
 - decision making: compare numbers, letters, ...
 decide what to do next depending on result of previous computations
 - control the rest of the machine
 tell memory to send data to display; tell disk to read data from network; ...
- operates by performing sequences of simple operations <u>very</u> fast
- instructions to be performed are stored in the same memory as the data is
 - instructions are encoded as numbers: e,g., Add = 1, Subtract = 2, ...
- the processor is a general-purpose device: putting different instructions into the memory makes it do a different task
 - this is what happens when you run different programs

How fast is fast?

- CPU uses an internal "clock" (like a heartbeat) to step through instructions
- 900 MHz, 2.5 GHz, etc., is the number of clock ticks per second
 - 1 Hertz = 1 tick per second; abbreviated 1 Hz
 - mega = million
 - giga = billion
 - 1 MHz = 1 megaHertz = 1 million ticks per second
 - 1 GHz = 1 gigaHertz = 1 billion ticks per second = 1000 MHz
- one instruction (like adding two numbers) might take one,
 two or several ticks, depending on design of the CPU
 - might even complete more than one instruction in one tick
- modern processors execute several billion instructions/sec

Primary Memory (Random Access Memory = "RAM")

- a place to store information while the computer is running
 - the programs that are running
 - their data
 - the operating system (Windows, Mac OS X, Unix/Linux, ...)
- volatile: forgets everything when power is turned off
- limited (though large) capacity
- logically, a set of numbered boxes ("pigeonholes"? Frist mailboxes?)
 - each capable of storing one byte = 8 bits of information
 a small number or a single character like A or part of a larger value
 - random access
 CPU can access any location as quickly as any other location



What's a bit? What's a byte?

- a bit is the smallest unit of information
- represents one 2-way decision or a choice out of two possibilities
 - yes / no, true / false, on / off, up / down, ...
- abstraction of all of these is represented as 0 or 1
 - enough to tell which of TWO possibilities has been chosen
 - a single digit with one of two values
 - hence "binary digit"
 - hence bit
- binary is used in computers because it's easy to make fast, reliable, small devices that have only two states
 - high voltage/low voltage, current flowing/not flowing (chips)
 - electrical charge present/not present (Flash)
 - magnetized this way or that (disks)
 - light bounces off/doesn't bounce off (cd-rom, dvd)
- all information in a computer is stored and processed as bits
- a byte is 8 bits that are treated as a unit

Disks

- a place to store information when the power is turned off
- was based on magnetic surfaces, rotating machinery
 - today, more often solid-state Flash memory (SSD)
- logical / functional structure: folders (directories) and files
 - your information: papers, mail, music, web page, ...
 - programs and their data: Firefox, Word, iTunes, ...
 - operating system(s): Windows, MacOS, Unix, Linux, ...
 - bookkeeping info: where things are physically located

Wrapup on components

- the logical or functional components of computer hardware
- how they fit together, what the numbers measure
- some Greek/Latin/... prefixes:
 - (...,) nano, micro, milli, kilo, mega, giga, tera, (peta, ...)
- what the basic physical pieces look like
- one logical organization can have different physical forms
- logical organization hasn't changed much in 60+ years
- physical form has changed rapidly for the entire time
 - many tradeoffs among physical forms (size, weight, power, ...)

Some numeric prefixes you should know

nano micro milli	10^{-9} 10^{-6} 10^{-3}	billionth millionth thousandth
-	10^{0}	
kilo	10^3	thousand
mega	10^{6}	million
giga	10^{9}	billion
tera	10^{12}	trillion
peta	10^{15}	quadrillion