
Lecture T6:  NP-Completeness

Can you color each of the 48 states red, white, or blue 
so that no two adjacent states have the same color?
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Overview

Lecture T4:

■ What is an algorithm?
– Turing machine

■ Which problems can be solved on a computer?
– not the halting problem

Lecture T5:

■ Which algorithms will be useful in practice?
– polynomial vs. exponential algorithms

This lecture:

■ Which problems can be solved on a computer in a reasonable 
amount of time?

– probably not 3-COLOR or TSP
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3 Colorability

3-COLOR.

■ Given a planar map, can it be colored using 3 colors so that no 
adjacent regions have the same color?

YES instance.
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3 Colorability

3-COLOR.

■ Given a planar map, can it be colored using 3 colors so that no 
adjacent regions have the same color?

NO instance.
Impossible to 3-color Nevada 
and bordering states.
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Some Hard Problems

CIRCUIT-SAT

■ Is there a way to assign
inputs to a given Boolean
circuit that makes it true?

YES instance.

NO instance.
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Some Hard Problems

FACTOR

■ Given two positive integers x and U, is there a nontrivial factor of x 
that is less than U?

■ Factoring is at the heart of RSA encryption.

Input: x = 23,536,481,273,  U = 110,000

Yes,  since  x = 224,737 * 104,729.
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Properties of Algorithms

A given problem can be solved by many different algorithms (TM’s).

■ Which ones are useful in practice?

A working definition:  (Jack Edmonds, 1962)

■ Efficient:  polynomial time for ALL inputs.
– mergesort requires N log2N steps

■ Inefficient:  "exponential time" for SOME inputs.
– brute force TSP takes N! > 2N steps

Robust definition has led to explosion of useful algorithms for wide 
spectrum of problems.
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Exponential Growth

Exponential growth dwarfs technological change.

■ Suppose each electron in the universe had power of today’s 
supercomputers.

■ And each works for the life of the universe in an effort to solve TSP 
problem using N! algorithm from Lecture P6.

■ Will not succeed for 1,000 city TSP!

1000!  >>  101000 >>  1079 * 1013 * 109 * 1012

Some Numbers
quantity number

Home PC instructions/second 109

Supercomputer instructions per second 1012

Seconds per year 109

Age of universe in years (estimated) 1013

Electrons in universe (estimated) 1079
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Properties of Problems

Which ALGORITHMS will be useful in practice?

■ Efficient:  polynomial time for ALL inputs.

■ Inefficient:  "exponential time" for SOME inputs. 

Which PROBLEMS will we be able to solve in practice?

■ Those with efficient algorithms.

■ How can I tell if I am trying to solve such a problem?
– 2-COLOR:  yes
– 3-COLOR:  probably no
– 4-COLOR:  yes

Theorem (Appel-Haken, 1976).
Every planar map is 4 colorable.
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P

Definition of P:
■ Set of all decision problems solvable in polynomial time on a 

deterministic Turing machine.

Examples:
■ MULTIPLE:  Is the integer y a multiple of x?

– YES: (x, y) = (17, 51).
■ RELPRIME:  Are the integers x and y relatively prime?

– YES:  (x, y) = (34, 39).
■ MEDIAN:  Given integers x1, …, xn, is the median value < M?

– YES:  (M, x1, x2, x3, x4, x5) = (17, 2, 5, 17, 22, 104)

Definition important because of Strong Church-Turing thesis.
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Strong Church-Turing Thesis

Strong Church-Turing thesis:
■ P is the set of all decision problems solvable in polynomial time on 

REAL computers.

Evidence supporting thesis:
■ True for all physical computers.

– can create deterministic TM that efficiently simulates TOY 
machine (and vice versa)

– can create deterministic TM that efficiently simulates any 
physical machine (and vice versa)

■ Possible exception?
– quantum computers – no conventional gates
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NP

Definition of NP:

■ Set of all decision problems solvable in polynomial time on a 
NONDETERMINISTIC Turing machine.

■ Definition important because it links many fundamental problems.

Useful alternate definition:

■ Set of all decision problems with efficient verification algorithms.
– efficient = polynomial number of steps on deterministic TM

■ Verifier:  algorithm for decision problem with extra input.
! original input
! polynomial-size CERTIFICATE (a helpful hint).
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Verifiers and Certificates

COMPOSITE:  Given integer x, is x composite?

■ YES instance:  x = 23,536,481,273.
– a corresponding certificate:

c = 104,729  (a factor)
– every YES instance has

such a certificate

Verifier:
Is x a multiple of c?

NO

Input x:
23,536,481,273

Certificate c:  
104,729

x is a YES instance no conclusion

YES
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Verifiers and Certificates

COMPOSITE:  Given integer x, is x composite?

■ YES instance:  x = 23,536,481,273.
– a corresponding certificate:

c = 104,729  (a factor)
– every YES instance has

such a certificate

■ NO instance:  x = 23,536,481,277.
– no NO instance has a valid

certificate

■ Conclusion:  COMPOSITE is in NP.
Verifier:
Is x a multiple of c?

NO

Input x:
23,536,481,277

Certificate c:  
??????

x is a YES instance no conclusion

YES
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Verifiers and Certificates

PRIME:  Given integer x, is x prime?

■ YES instance:  x = 23,536,481,277.
– not at all obvious what makes a

good certificate
– using deep facts from number

theory, every YES instance has
a certificate of primality

■ Fact:  PRIME is in NP.

Verifier:
??????

NO

Input x:
23,536,481,277

Certificate c:  
??????

x is a YES instance no conclusion

YES
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Verifiers and Certificates

3-COLOR:  Given planar map, can it be colored with 3 colors?

Verifier:
1. Check that x and c describe same map.
2. Count number of distinct colors in c.
3. Check all pairs of adjacent states.

NO

Input x: Certificate c:

x is a YES instance no conclusion

YES
3-COLOR is in NP.
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NP

NP = set of decision problems with efficient verification algorithms.

Why doesn’t this imply that all problems in NP can be solved 
efficiently?

■ BIG PROBLEM:  need to know certificate ahead of time.
– real computers can simulate by guessing

all possible certificates and verifying
– naïve simulation takes exponential time unless

you get "lucky"
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The Main Question

Does P = NP? (Edmonds, 1962)

■ Is the original DECISION problem as easy as VERIFICATION?

Most important open problem in theoretical computer science.  Also 
ranked #3 in all of mathematics.  (Smale, 1999)

NP

P

If  P ≠ NP If  P = NP

P = NP
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The Main Question

Does P = NP?

■ Is the original DECISION problem as easy as VERIFICATION?

If yes, then:

■ Efficient algorithms for 3-COLOR, TSP, and factoring.

■ Cryptography is impossible (except for one-time pads) on 
conventional machines.

■ Modern banking system will collapse.

■ Harmonial bliss.

If no, then:

■ Can’t hope to write efficient algorithm for TSP.
– see NP-completeness

■ But maybe efficient algorithm still exists for factoring???
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The Main Question

Does P = NP?

■ Is the original DECISION problem as easy as VERIFICATION?

Probably no, since:

■ Thousands of researchers have spent four decades in search of 
polynomial algorithms for many fundamental NP problems without 
success.

■ Consensus opinion:  P ≠ NP.

But maybe yes, since:

■ No success in proving P ≠ NP either.
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NP-Complete

Definition of NP-complete:

■ A problem with the property that if it can be solved efficiently, then 
it can be used as a subroutine to solve any other problem in NP 
efficiently.

■ "Hardest computational problems" in NP.

P = NP = NP-complete

NP

NP-
completeP

If  P ≠ NP If  P = NP

24

NP-Complete

Definition of NP-complete:

■ A problem with the property that if it can be solved efficiently, then 
it can be used as a subroutine to solve any other problem in NP 
efficiently.

Links together a huge and diverse number of fundamental problems:

■ TSP, 3-COLOR, SCHEDULE, SAT, CLIQUE, thousands more.

■ Given an efficient algorithm for 3-COLOR, can efficiently solve 
TSP, SCHEDULE, SAT, CLIQUE, FACTOR, etc.

■ Can implement any program in 3-COLOR. 

Note:  FACTOR is in NP but not known to be NP-complete.

Notorious complexity class.

■ Only exponential algorithms known for these problems.

■ Called intractable - unlikely that they can be solved given limited 
computing resources.
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Reduction

Reduction is a general technique for showing that one problem is
harder (easier) than another.

■ For problems A and B, we can often show:  if A can be solved 
efficiently, then so can B.

■ In this case, we say B reduces to A.  (B is "easier" than A).

Warmup:  PRIMALITY reduces to FACTOR.

■ Given any instance of PRIMALITY (i.e., positive integer x), we can 
determine the yes-no answer by using X = L = p as input to 
FACTOR and returning opposite answer.

– original instance:  Is p = 23,536,481,273 prime?
– transformed instance:  Does X = 23,536,481,273 have a nontrivial

factor less than L = 23,536,481,273?
– if answer to transformed instance is no, then answer to original

instance is yes
– if answer to transformed instances is yes, then answer to 

original instance is no
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Reduction:  Karp (1972)

SATISFIABILITY

3SAT

3DM VERTEX 
COVER

HAMILTONIAN
CIRCUIT

CLIQUE

INDEPENDENT
SET

GRAPH
3-COLOR

PLANAR
3-COLOR

EXACT
COVER

TSP

SUBSET-SUM

PARTITION INTEGER
PROGRAMMING

KNAPSACK
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The "World’s First" NP-Complete Problem

SAT is NP-complete.  (Cook-Levin, 1960’s)

Idea of proof:

■ By definition, nondeterministic TM can solve 
problem in NP in polynomial time.

■ Polynomial-size Boolean formula can describe 
(nondeterministic) TM.

■ Given any problem in NP, establish a 
correspondence with some instance of SAT.

■ SAT solution gives simulation of TM solving 
the corresponding problem.

■ IF SAT can be solved in polynomial time, then 
so can any problem in NP (e.g., TSP).

Stephen Cook
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Coping With NP-Completeness

Hope that worst case doesn’t occur. 

■ Complexity theory deals with worst case behavior.  The instance(s) 
you want to solve may be "easy."

– TSP where all points are on a line or circle
– 13,509 US city TSP problem solved  (Cook et. al., 1998)

Bill Cook
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Coping With NP-Completeness

Hope that worst case doesn’t occur. 

Change the problem.

■ Develop a heuristic, and hope it produces a good solution.
– TSP assignment.

■ Design an approximation algorithm: algorithm that is guaranteed 
to find a high-quality solution in polynomial time.

– active area of research, but not always possible
– Euclidean TSP tour within 1% of optimal

(Arora, 1997)

Sanjeev Arora
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Coping With NP-Completeness

Hope that worst case doesn’t occur. 

Change the problem.

Exploit intractability.

Keep trying to prove P = NP.
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Summary

Many fundamental problems are NP-complete.

■ TSP, SAT, 3-COLOR.

Theory says we probably won’t be able to design efficient algorithms 
for NP-complete problems.

■ You will likely run into these problems in your scientific life.

■ If you know about NP-completeness, you can identify them and 
avoid wasting time.

Lecture T6:  Extra Slides
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Some Hard Problems

TSP

■ A travelling salesperson needs to visit N cities.  Is there a route of 
length at most D?

Is there a tour of length at most 1570? 
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Some Hard Problems

TSP

■ A travelling salesperson needs to visit N cities.  Is there a route of 
length at most D?

Is there a tour of length at most 1570? Blue tour = 1581.
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Some Hard Problems

TSP

■ A travelling salesperson needs to visit N cities.  Is there a route of 
length at most D?

Is there a tour of length at most 1570? Yes, red tour = 1565.
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Some Hard Problems

SCHEDULE

■ A set of jobs of varying length need to be processed on two 
identical machines before a certain deadline T.  Can the jobs be
arranged so that the deadline is met?

A D

F

B C

GE

Machine 2

Machine 1

Time T0

length of job F
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Machine 2

Machine 1

Some Hard Problems

SCHEDULE

■ A set of jobs of varying length need to be processed on two 
identical machines before a certain deadline T.  Can the jobs be
arranged so that the deadline is met?

A D F

B C E

Time T0

G

Yes.

A D

F

B C

GE

length of job F
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Some Hard Problems

CLIQUE

■ Given N people and their pairwise relationships.  Is there a group 
of S people such that every pair in the group knows each other.

ba c

h g

f

e

d

i

j

k

Friendship Graph
People: a, b, c, d, e, . . ., k

Friendships: (a, e), (a, f), (a, g), . . ., (h, k)

Clique size: S = 4?
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Some Hard Problems

CLIQUE

■ Given N people and their pairwise relationships.  Is there a group 
of S people such that every pair in the group knows each other.

ba c

h g

f

e

d

i

j

k

Friendship Graph
People: a, b, c, d, e, . . ., k

Friendships: (a, e), (a, f), (a, g), . . ., (h, k)

Clique size: S = 4?

Yes - {b, d, i, h} is a witness.
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Some Hard Problems

SAT

■ Is there a way to assign truth values to a given Boolean formula
that makes it true?

Boolean formula: (x’ + y + z) (x + y’ + z) (y + z) (x’ + y’ + z’)

Yes,  x = true, y = true, z = false is a witness.
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Reduction

Reduction is a general technique for showing that one problem is
harder (easier) than another.

■ For problems A and B, we can often show:  if A can be solved 
efficiently, then so can B.

■ In this case, we say B reduces to A.  (B is "easier" than A).

SAT reduces to CLIQUE

■ Given any input to SAT, we create a corresponding input to 
CLIQUE that will help us solve the original SAT problem.

■ Specifically, for a SAT formula with K clauses, we construct a 
CLIQUE input that has a clique of size K if and only if the original 
Boolean formula is satisfiable.

■ If we had an efficient algorithm for CLIQUE, we could apply our 
transformation, solve the associated CLIQUE problem, and obtain 
the yes-no answer for the original SAT problem.
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SAT reduces to CLIQUE

SAT reduces to CLIQUE

■ Associate a person to each variable occurrence in each clause.

yx’ z

y z

z

y’

x

z’

y’

x’

first clause

Boolean formula:

(x' + y + z) (x + y' + z) (y + z) (x' + y' + z')
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SAT reduces to CLIQUE

SAT reduces to CLIQUE

■ Associate a person to each variable occurrence in each clause.

■ Two people know each other except if:
– they come from the same clause
– they represent t and t’ for some variable t

yx’ z

y z

z

y’

x

z’

y’

x’

Boolean formula:

(x' + y + z) (x + y' + z) (y + z) (x' + y' + z')
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SAT reduces to CLIQUE

SAT reduces to CLIQUE

■ Associate a person to each variable occurrence in each clause.

■ Two people know each other except if:
– they come from the same clause
– they represent t and t’ for some variable t

■ Clique of size 4 ⇒ satisfiable assignment.
– set variable in clique to true
– (x, y, z) = (true, true, false)

Boolean formula:

(x’ + y + z) (x + y’ + z) (y + z) (x’ + y’ + z’)

yx’ z

y z

z

y’

x

z’

y’

x’
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SAT reduces to CLIQUE

SAT reduces to CLIQUE

■ Associate a person to each variable occurrence in each clause.

■ Two people know each other except if:
– they come from the same clause
– they represent t and t’ for some variable t

■ Clique of size 4 ⇒ satisfiable assignment.

■ Satisfiable assignment ⇒ clique of size 4
– (x, y, z) = (false, false, true)
– choose one true literal from each

clause 
yx’ z

y z

z

y’

x

z’

y’

x’

Boolean formula:

(x' + y + z) (x + y' + z) (y + z) (x' + y' + z')
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CLIQUE is NP-Complete

CLIQUE is NP-complete.

■ CLIQUE is in NP.

■ SAT is NP-complete.

■ SAT reduces to CLIQUE.

Thousands of problems shown to be NP-complete in this way.


