## Lecture T6: NP-Completeness

 so that no two adjacent states have the same color?

## Overview

Lecture T4:

- What is an algorithm?
- Turing machine
- Which problems can be solved on a computer? - not the halting problem


## Lecture T5:

. Which algorithms will be useful in practice? - polynomial vs. exponential algorithms

This lecture:

- Which problems can be solved on a computer in a reasonable amount of time?
- probably not 3-COLOR or TSP


## 3 Colorability

## 3-COLOR.

- Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?



## 3 Colorability

## 3-COLOR.

- Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?


## NO instance.

Impossible to 3-color Nevada and bordering states.

## Some Hard Problems

CIRCUIT-SAT

- Is there a way to assign inputs to a given Boolean circuit that makes it true?



## Some Hard Problems

FACTOR

- Given two positive integers $x$ and $U$, is there a nontrivial factor of $x$ that is less than $\mathbf{U}$ ?
- Factoring is at the heart of RSA encryption.

Input: $x=23,536,481,273, U=110,000$
Yes, since $x=224,737$ * 104,729.

## Properties of Algorithms

A given problem can be solved by many different algorithms (TM's).
. Which ones are useful in practice?

A working definition: (Jack Edmonds, 1962)

- Efficient: polynomial time for ALL inputs.
- mergesort requires $\mathrm{N} \log _{2} \mathrm{~N}$ steps
- Inefficient: "exponential time" for SOME inputs.
- brute force TSP takes $\mathrm{N}!>2^{\mathrm{N}}$ steps

Robust definition has led to explosion of useful algorithms for wide spectrum of problems.


## Exponential Growth

Exponential growth dwarfs technological change.
. Suppose each electron in the universe had power of today's supercomputers.
. And each works for the life of the universe in an effort to solve TSP problem using N ! algorithm from Lecture P6.

| Some Numbers |  |
| :--- | :--- |
| quantity |  |
| Home PC instructions/second | $10^{9}$ |
| Supercomputer instructions per second | $10^{12}$ |
| Seconds per year | $10^{9}$ |
| Age of universe in years (estimated) | $10^{13}$ |
| Electrons in universe (estimated) | $10^{79}$ |

- Will not succeed for 1,000 city TSP!

```
1000! >> 10'1000 >> 1079 * 1013 * 109 * 10'12
```



## Properties of Problems

Which ALGORITHMS will be useful in practice?

- Efficient: polynomial time for ALL inputs.
. Inefficient: "exponential time" for SOME inputs.

Which PROBLEMS will we be able to solve in practice?

- Those with efficient algorithms.
. How can I tell if I am trying to solve such a problem?
-2-COLOR: yes
- 3-COLOR: probably no
- 4-COLOR: yes

Theorem (Appel-Haken, 1976).
Every planar map is 4 colorable.

Definition of P :

- Set of all decision problems solvable in polynomial time on a deterministic Turing machine.

Examples:
. MULTIPLE: Is the integer $y$ a multiple of $x$ ?

- YES: $(x, y)=(17,51)$.
- RELPRIME: Are the integers $x$ and $y$ relatively prime?
- YES: $(x, y)=(34,39)$.
. MEDIAN: Given integers $x_{1}, \ldots, x_{n}$, is the median value $<M$ ?
- YES: (M, $\left.x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(17,2,5,17,22,104)$

Definition important because of Strong Church-Turing thesis.

## Strong Church-Turing Thesis

Strong Church-Turing thesis:

- $\mathbf{P}$ is the set of all decision problems solvable in polynomial time on REAL computers.

Evidence supporting thesis:

- True for all physical computers.
- can create deterministic TM that efficiently simulates TOY machine (and vice versa)
- can create deterministic TM that efficiently simulates any physical machine (and vice versa)
- Possible exception?
- quantum computers - no conventional gates


## NP

Definition of NP:

- Set of all decision problems solvable in polynomial time on a NONDETERMINISTIC Turing machine.
- Definition important because it links many fundamental problems.

Useful alternate definition:

- Set of all decision problems with efficient verification algorithms. - efficient = polynomial number of steps on deterministic TM
- Verifier: algorithm for decision problem with extra input.


## Verifiers and Certificates

COMPOSITE: Given integer $\mathbf{x}$, is x composite?
. YES instance: $x=23,536,481,273$.

- a corresponding certificate:
$c=104,729$ (a factor)
- every YES instance has such a certificate


## Verifiers and Certificates

COMPOSITE: Given integer x , is x composite?
. YES instance: $x=23,536,481,273$

- a corresponding certificate:
$\mathrm{c}=104,729$ (a factor)
- every YES instance has such a certificate
. NO instance: $x=23,536,481,277$.
- no NO instance has a valid certificate
. Conclusion: COMPOSITE is in NP.

$x$ is a YES instance no conclusion


## Verifiers and Certificates

PRIME: Given integer $x$, is $x$ prime?

- YES instance: $x=23,536,481,277$.
- not at all obvious what makes a good certificate
- using deep facts from number theory, every YES instance has a certificate of primality
. Fact: PRIME is in NP.


## Input x:

23,536,481,27


## Verifier:

??????

YES
$x$ is a YES instance no conclusion

## Verifiers and Certificates

3-COLOR: Given planar map, can it be colored with 3 colors?


## NP

NP = set of decision problems with efficient verification algorithms.

Why doesn't this imply that all problems in NP can be solved efficiently?

- BIG PROBLEM: need to know certificate ahead of time.
- real computers can simulate by guessing all possible certificates and verifying
- naïve simulation takes exponential time unless you get "lucky"



## The Main Question

Does $\mathrm{P}=\mathrm{NP}$ ?

- Is the original DECISION problem as easy as VERIFICATION?

If yes, then:

- Efficient algorithms for 3-COLOR, TSP, and factoring.
- Cryptography is impossible (except for one-time pads) on conventional machines.
. Modern banking system will collapse.
- Harmonial bliss.

If no, then:

- Can't hope to write efficient algorithm for TSP. - see NP-completeness
- But maybe efficient algorithm still exists for factoring???


## The Main Question

Does $\mathbf{P}=\mathbf{N P}$ ? (Edmonds, 1962)

- Is the original DECISION problem as easy as VERIFICATION?

Most important open problem in theoretical computer science. Also ranked \#3 in all of mathematics. (Smale, 1999)


## The Main Question

Does $\mathrm{P}=\mathrm{NP}$ ?

- Is the original DECISION problem as easy as VERIFICATION?

Probably no, since:

- Thousands of researchers have spent four decades in search of polynomial algorithms for many fundamental NP problems without success.
- Consensus opinion: $\mathbf{P} \neq$ NP.

But maybe yes, since:

- No success in proving $P \neq$ NP either.


## NP-Complete

Definition of NP-complete:

- A problem with the property that if it can be solved efficiently, then it can be used as a subroutine to solve any other problem in NP efficiently.
. "Hardest computational problems" in NP.



## NP-Complete

Definition of NP-complete:

- A problem with the property that if it can be solved efficiently, then it can be used as a subroutine to solve any other problem in NP efficiently.

Links together a huge and diverse number of fundamental problems:
. TSP, 3-COLOR, SCHEDULE, SAT, CLIQUE, thousands more.

- Given an efficient algorithm for 3-COLOR, can efficiently solve TSP, SCHEDULE, SAT, CLIQUE, FACTOR, etc.
- Can implement any program in 3-COLOR.

Note: FACTOR is in NP but not known to be NP-complete.

Notorious complexity class.

- Only exponential algorithms known for these problems.
- Called intractable - unlikely that they can be solved given limited computing resources.


## Reduction

Reduction is a general technique for showing that one problem is harder (easier) than another.

- For problems A and B, we can often show: if A can be solved efficiently, then so can B.
- In this case, we say $B$ reduces to $A$. ( $B$ is "easier" than $A$ ).

Warmup: PRIMALITY reduces to FACTOR.

- Given any instance of PRIMALITY (i.e., positive integer $x$ ), we can determine the yes-no answer by using $X=L=p$ as input to
FACTOR and returning opposite answer.
- original instance: Is $p=23,536,481,273$ prime?
- transformed instance: Does $X=23,536,481,273$ have a nontrivial factor less than $L=23,536,481,273$ ?
- if answer to transformed instance is no, then answer to original instance is yes
- if answer to transformed instances is yes, then answer to original instance is no



## The "World's First" NP-Complete Problem

SAT is NP-complete. (Cook-Levin, 1960's)

Idea of proof:

- By definition, nondeterministic TM can solve problem in NP in polynomial time.
- Polynomial-size Boolean formula can describe (nondeterministic) TM.
- Given any problem in NP, establish a correspondence with some instance of SAT.
- SAT solution gives simulation of TM solving the corresponding problem.
- IF SAT can be solved in polynomial time, then so can any problem in NP (e.g., TSP).


Stephen Cook

## Coping With NP-Completeness

Hope that worst case doesn't occur.
Change the problem.

- Develop a heuristic, and hope it produces a good solution. - TSP assignment.
- Design an approximation algorithm: algorithm that is guaranteed to find a high-quality solution in polynomial time.
- active area of research, but not always possible
- Euclidean TSP tour within 1\% of optimal (Arora, 1997)


Sanjeev Arora

## Coping With NP-Completeness

Hope that worst case doesn't occur.

- Complexity theory deals with worst case behavior. The instance(s) you want to solve may be "easy."
- TSP where all points are on a line or circle
- 13,509 US city TSP problem solved (Cook et. al., 1998)


Bill Cook

## Coping With NP-Completeness

Hope that worst case doesn't occur.
Change the problem.
Exploit intractability.

Keep trying to prove $\mathbf{P}=\mathbf{N P}$.

## Summary

Many fundamental problems are NP-complete.
. TSP, SAT, 3-COLOR.

Theory says we probably won't be able to design efficient algorithms for NP-complete problems.

- You will likely run into these problems in your scientific life.
- If you know about NP-completeness, you can identify them and avoid wasting time.


## Lecture T6: Extra Slides



## Some Hard Problems

TSP

- A travelling salesperson needs to visit $\mathbf{N}$ cities. Is there a route of length at most $D$ ?


Is there a tour of length at most $1570 ?$ Blue tour $=1581$.

## Some Hard Problems

TSP

- A travelling salesperson needs to visit $\mathbf{N}$ cities. Is there a route of length at most $D$ ?


Is there a tour of length at most 1570 ? Yes, red tour $=1565$.

## Some Hard Problems

## SCHEDULE

- A set of jobs of varying length need to be processed on two identical machines before a certain deadline $T$. Can the jobs be arranged so that the deadline is met?



## Some Hard Problems

## SCHEDULE

- A set of jobs of varying length need to be processed on two identical machines before a certain deadline $T$. Can the jobs be arranged so that the deadline is met?



## Some Hard Problems

## CLIQUE

- Given $\mathbf{N}$ people and their pairwise relationships. Is there a group of $S$ people such that every pair in the group knows each other.

People: a, b, c, d, e, ..., k
Friendships: (a, e), (a, f), (a, g), ..., (h, k)
Clique size: $\mathrm{S}=\mathbf{4}$ ?

Friendship Graph


## Some Hard Problems

CLIQUE

- Given $\mathbf{N}$ people and their pairwise relationships. Is there a group of $S$ people such that every pair in the group knows each other.

Friendship Graph
People: a, b, c, d, e, ..., k
Friendships: (a, e), (a, f), (a, g), ..., (h, k)
Clique size: $S=4$ ?
Yes $-\{b, d, i, h\}$ is a witness.


## Some Hard Problems

SAT

- Is there a way to assign truth values to a given Boolean formula that makes it true?

Boolean formula: $\left(x^{\prime}+y+z\right)\left(x+y^{\prime}+z\right)(y+z)\left(x^{\prime}+y^{\prime}+z^{\prime}\right)$

Yes, $x=$ true, $y=$ true, $z=$ false is a witness.

## Reduction

Reduction is a general technique for showing that one problem is harder (easier) than another.
. For problems A and B, we can often show: if A can be solved efficiently, then so can B.

- In this case, we say $B$ reduces to $A$. ( $B$ is "easier" than $A$ ).

SAT reduces to CLIQUE

- Given any input to SAT, we create a corresponding input to CLIQUE that will help us solve the original SAT problem.
- Specifically, for a SAT formula with K clauses, we construct a CLIQUE input that has a clique of size K if and only if the original Boolean formula is satisfiable.
- If we had an efficient algorithm for CLIQUE, we could apply our transformation, solve the associated CLIQUE problem, and obtain the yes-no answer for the original SAT problem.


## SAT reduces to CLIQUE

## SAT reduces to CLIQUE

- Associate a person to each variable occurrence in each clause.



## SAT reduces to CLIQUE

SAT reduces to CLIQUE

- Associate a person to each variable occurrence in each clause.
. Two people know each other except if:
- they come from the same clause
- they represent $t$ and $t$ ' for some variable $t$

```
Boolean formula:
(\mp@subsup{x}{}{\prime}+y+z)(x+y'}+z)(y+z)(\mp@subsup{x}{}{\prime}+\mp@subsup{y}{}{\prime}+\mp@subsup{z}{}{\prime}
```



## SAT reduces to CLIQUE

SAT reduces to CLIQUE

- Associate a person to each variable occurrence in each clause.
- Two people know each other except if:
- they come from the same clause
- they represent $t$ and $t$ ' for some variable $t$
- Clique of size $4 \Rightarrow$ satisfiable assignment.
- Satisfiable assignment $\Rightarrow$ clique of size 4
- ( $x, y, z$ ) = (false, false, true)
- choose one true literal from each clause

```
```

Boolean formula:

```
```

Boolean formula:
(\mp@subsup{x}{}{\prime}+y+z)(x+y'}+z)(y+z)(\mp@subsup{x}{}{\prime}+\mp@subsup{y}{}{\prime}+\mp@subsup{z}{}{\prime}

```
```

(\mp@subsup{x}{}{\prime}+y+z)(x+y'}+z)(y+z)(\mp@subsup{x}{}{\prime}+\mp@subsup{y}{}{\prime}+\mp@subsup{z}{}{\prime}

```
```



## SAT reduces to CLIQUE

SAT reduces to CLIQUE

- Associate a person to each variable occurrence in each clause.
. Two people know each other except if:
- they come from the same clause
- they represent $t$ and $t$ ' for some variable $t$
- Clique of size $4 \Rightarrow$ satisfiable assignment.
- set variable in clique to true
- ( $x, y, z$ ) = (true, true, false)

```
Boolean formula:
(x'+y+z)(x+y'+z)(y+z)(\mp@subsup{x}{}{\prime}+\mp@subsup{y}{}{\prime}+\mp@subsup{z}{}{\prime})
```


## CLIQUE is NP-Complete

CLIQUE is NP-complete.

- CLIQUE is in NP.
- SAT is NP-complete.
. SAT reduces to CLIQUE.

Thousands of problems shown to be NP-complete in this way.

