Overview

Lecture T6: NP-Completeness

Lecture T4:

- . What is an algorithm?
 - Turing machine
- Which problems can be solved on a computer?
 not the halting problem

Lecture T5:

- Which algorithms will be useful in practice?
 - polynomial vs. exponential algorithms

This lecture:

- Which problems can be solved on a computer in a reasonable amount of time?
 - probably not 3-COLOR or TSP

3 Colorability

3-COLOR.

• Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?

3 Colorability

3-COLOR.

• Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?

Some Hard Problems

FACTOR

- Given two positive integers x and U, is there a nontrivial factor of x that is less than U?
- Factoring is at the heart of RSA encryption.

Input: x = 23,536,481,273, U = 110,000

Yes, since x = 224,737 * 104,729.

Properties of Algorithms

A given problem can be solved by many different algorithms (TM's).

. Which ones are useful in practice?

A working definition: (Jack Edmonds, 1962)

- Efficient: polynomial time for ALL inputs.
 - mergesort requires N log₂N steps
- Inefficient: "exponential time" for SOME inputs.
 - brute force TSP takes N! > 2^N steps

Robust definition has led to explosion of useful algorithms for wide spectrum of problems.

Exponential Growth

Exponential growth dwarfs technological change.

- Suppose each electron in the universe had power of today's supercomputers.
- And each works for the life of the universe in an effort to solve TSP problem using N! algorithm from Lecture P6.

Some N	lumbers
--------	---------

quantity	number
Home PC instructions/second	10 ⁹
Supercomputer instructions per second	10 ¹²
Seconds per year	10 ⁹
Age of universe in years (estimated)	10 ¹³
Electrons in universe (estimated)	10 ⁷⁹

Will not succeed for 1,000 city TSP!
 1000! >> 10¹⁰⁰⁰ >> 10⁷⁹ * 10¹³ * 10⁹ * 10¹²

Properties of Problems

Which ALGORITHMS will be useful in practice?

. Efficient: polynomial time for ALL inputs.

Theorem (Appel-Haken, 1976). Every planar map is 4 colorable.

. Inefficient: "exponential time" for SOME inputs.

Which **PROBLEMS** will we be able to solve in practice?

- . Those with efficient algorithms.
- . How can I tell if I am trying to solve such a problem?
 - 2-COLOR: yes
 - 3-COLOR: probably no
 - 4-COLOR: yes

Ρ

Definition of P:

• Set of all decision problems solvable in polynomial time on a deterministic Turing machine.

Examples:

- . MULTIPLE: Is the integer y a multiple of x?
 - YES: (x, y) = (17, 51).
- RELPRIME: Are the integers x and y relatively prime? - YES: (x, y) = (34, 39).
- MEDIAN: Given integers x₁, ..., x_n, is the median value < M?</p>
- YES: (M, x₁, x₂, x₃, x₄, x₅) = (17, 2, 5, 17, 22, 104)

Definition important because of Strong Church-Turing thesis.

Strong Church-Turing Thesis

Strong Church-Turing thesis:

P is the set of all decision problems solvable in polynomial time on REAL computers.

Evidence supporting thesis:

- . True for all physical computers.
 - can create deterministic TM that efficiently simulates TOY machine (and vice versa)
 - can create deterministic TM that efficiently simulates any physical machine (and vice versa)
- Possible exception?
 - quantum computers no conventional gates

NP

Definition of NP:

an

A REAL

- Set of all decision problems solvable in polynomial time on a NONDETERMINISTIC Turing machine.
- Definition important because it links many fundamental problems.

Useful alternate definition:

- Set of all decision problems with efficient verification algorithms.
 efficient = polynomial number of steps on deterministic TM
- Verifier: algorithm for decision problem with extra input.

The Main Question

Does P = NP? (Edmonds, 1962)

. Is the original DECISION problem as easy as VERIFICATION?

Most important open problem in theoretical computer science. Also ranked #3 in all of mathematics. (Smale, 1999)

The Main Question

Does P = NP?

. Is the original DECISION problem as easy as VERIFICATION?

If yes, then:

- Efficient algorithms for 3-COLOR, TSP, and factoring.
- Cryptography is impossible (except for one-time pads) on conventional machines.
- . Modern banking system will collapse.
- . Harmonial bliss.

If no, then:

- . Can't hope to write efficient algorithm for TSP.
 - see NP-completeness
- But maybe efficient algorithm still exists for factoring???

The Main Question

Does P = NP?

. Is the original DECISION problem as easy as VERIFICATION?

Probably no, since:

 Thousands of researchers have spent four decades in search of polynomial algorithms for many fundamental NP problems without success.

22

• Consensus opinion: $P \neq NP$.

But maybe yes, since:

• No success in proving $P \neq NP$ either.

NP-Complete

NP-Complete

Definition of NP-complete:

- A problem with the property that if it can be solved efficiently, then it can be used as a subroutine to solve any other problem in NP efficiently.
- "Hardest computational problems" in NP.

Definition of NP-complete:

• A problem with the property that if it can be solved efficiently, then it can be used as a subroutine to solve any other problem in NP efficiently.

Links together a huge and diverse number of fundamental problems:

- . TSP, 3-COLOR, SCHEDULE, SAT, CLIQUE, thousands more.
- Given an efficient algorithm for 3-COLOR, can efficiently solve TSP, SCHEDULE, SAT, CLIQUE, FACTOR, etc.
- . Can implement any program in 3-COLOR.

Note: FACTOR is in NP but not known to be NP-complete.

Notorious complexity class.

- Only exponential algorithms known for these problems.
- Called intractable unlikely that they can be solved given limited computing resources.

Reduction Reduction is a general technique for showing that one problem is harder (easier) than another. • For problems A and B, we can often show: if A can be solved efficiently, then so can B. • In this case, we say B reduces to A. (B is "easier" than A). Warmup: PRIMALITY reduces to FACTOR. • Given any instance of PRIMALITY (i.e., positive integer x), we can determine the yes-no answer by using X = L = p as input to FACTOR and returning opposite answer. • original instance: Is p = 23,536,481,273 prime? • transformed instance: Does X = 23,536,481,273 have a nontrivial

- if answer to transformed instance is no, then answer to original instance is yes
- if answer to transformed instances is yes, then answer to original instance is no

factor less than L = 23,536,481,273?

28

The "World's First" NP-Complete Problem

SAT is NP-complete. (Cook-Levin, 1960's)

Idea of proof:

- By definition, nondeterministic TM can solve problem in NP in polynomial time.
- Polynomial-size Boolean formula can describe (nondeterministic) TM.
- Given any problem in NP, establish a correspondence with some instance of SAT.
- SAT solution gives simulation of TM solving the corresponding problem.
- IF SAT can be solved in polynomial time, then so can any problem in NP (e.g., TSP).

Stephen Cook

Coping With NP-Completeness

Hope that worst case doesn't occur.

- Complexity theory deals with worst case behavior. The instance(s) you want to solve may be "easy."
 - TSP where all points are on a line or circle
 - 13,509 US city TSP problem solved (Cook et. al., 1998)

Coping With NP-Completeness

Hope that worst case doesn't occur.

Change the problem.

- Develop a heuristic, and hope it produces a good solution.
 TSP assignment.
- Design an approximation algorithm: algorithm that is guaranteed to find a high-quality solution in polynomial time.
 - active area of research, but not always possible
 - Euclidean TSP tour within 1% of optimal (Arora, 1997)

Sanjeev Arora

Coping With NP-Completeness

Hope that worst case doesn't occur.

Change the problem.

Exploit intractability.

Keep trying to prove P = NP.

Summary

Many fundamental problems are NP-complete.

. TSP, SAT, 3-COLOR.

Theory says we probably won't be able to design efficient algorithms for NP-complete problems.

- . You will likely run into these problems in your scientific life.
- If you know about NP-completeness, you can identify them and avoid wasting time.

Lecture T6: Extra Slides

Some Hard Problems

TSP

• A travelling salesperson needs to visit N cities. Is there a route of length at most D?

Some Hard Problems

TSP

38

• A travelling salesperson needs to visit N cities. Is there a route of length at most D?

Is there a tour of length at most 1570? Blue tour = 1581.

Some Hard Problems

. A travelling salesperson needs to visit N cities. Is there a route of

Some Hard Problems

SCHEDULE

• A set of jobs of varying length need to be processed on two identical machines before a certain deadline T. Can the jobs be arranged so that the deadline is met?

Some Hard Problems

Is there a tour of length at most 1570? Yes, red tour = 1565.

SCHEDULE

TSP

length at most D?

• A set of jobs of varying length need to be processed on two identical machines before a certain deadline T. Can the jobs be arranged so that the deadline is met?

42

Some Hard Problems CLIQUE a Given N people and their pairwise relationships. Is there a group of S people such that every pair in the group knows each other. People: a, b, c, d, e, ..., k Friendships: (a, e), (a, f), (a, g), ..., (h, k) Clique size: S = 4? Friendships is the contract of the second second

Some Hard Problems

CLIQUE

• Given N people and their pairwise relationships. Is there a group of S people such that every pair in the group knows each other.

Some Hard Problems

SAT

Is there a way to assign truth values to a given Boolean formula that makes it true?

Boolean formula: (x' + y + z) (x + y' + z) (y + z) (x' + y' + z')

Yes, x = true, y = true, z = false is a witness.

Reduction

Reduction is a general technique for showing that one problem is harder (easier) than another.

- For problems A and B, we can often show: if A can be solved efficiently, then so can B.
- . In this case, we say B reduces to A. (B is "easier" than A).

SAT reduces to CLIQUE

- Given any input to SAT, we create a corresponding input to CLIQUE that will help us solve the original SAT problem.
- Specifically, for a SAT formula with K clauses, we construct a CLIQUE input that has a clique of size K if and only if the original Boolean formula is satisfiable.
- If we had an efficient algorithm for CLIQUE, we could apply our transformation, solve the associated CLIQUE problem, and obtain the yes-no answer for the original SAT problem.

SAT reduces to CLIQUE

SAT reduces to CLIQUE

- Associate a person to each variable occurrence in each clause.
- . Two people know each other except if:
 - they come from the same clause
 - they represent t and t' for some variable t

SAT reduces to CLIQUE

SAT reduces to CLIQUE

- Associate a person to each variable occurrence in each clause.
- . Two people know each other except if:
 - they come from the same clause
 - they represent t and t' for some variable t
- . Clique of size 4 \Rightarrow satisfiable assignment.
- . Satisfiable assignment \Rightarrow clique of size 4
 - -(x, y, z) = (false, false, true)
 - choose one true literal from each clause

SAT reduces to CLIQUE

SAT reduces to CLIQUE

- Associate a person to each variable occurrence in each clause.
- . Two people know each other except if:
 - they come from the same clause
 - they represent t and t' for some variable t
- . Clique of size 4 \Rightarrow satisfiable assignment.
 - set variable in clique to true
 - -(x, y, z) = (true, true, false)

CLIQUE is NP-Complete

CLIQUE is NP-complete.

- . CLIQUE is in NP.
- . SAT is NP-complete.
- . SAT reduces to CLIQUE.

Thousands of problems shown to be NP-complete in this way.

Boolean formula:

(x' + y + z) (x + y' + z) (y + z) (x' + y' + z')