Overview

Lecture T5: Analysis of Algorithm

Lecture T4:

- . What is an algorithm?
 - Turing machine.
- Is it possible, in principle, to write a program to solve any problem?
 - No. Halting problem and others are unsolvable.

This Lecture:

- For many problems, there may be several competing algorithms. – Which one should I use?
- Computational complexity:
 - Rigorous and useful framework for comparing algorithms and predicting performance.
- . Use sorting as a case study.

Historical Quest for Speed

N = # bits in binary

representation of a, b

Multiplication: a × b.

- Naïve: add a to itself b times. N 2^N steps
- Grade school. N² steps
- Divide-and-conquer (1962). N^{1.58} steps
- Ingenuity (1971).
 N log N log log N steps

Greatest common divisor: gcd(a, b).

- Naïve: factor a and b, then find gcd(a, b). 2^N steps
- Euclid (20 BCE): gcd(a, b) = gcd(b, a mod b). N steps

Complex multiplication: (a + bi)(c + di) = x + yi.

- Naïve: x = ac bd, y = bc + ad. 4 multiplications
- . Gauss (1800): 3 multiplications

$$-x_1 = (a + b)(c + d), x_2 = ac, x_3 = bd$$

$$-x = x_2 - x_3, y = x_1 - x_2 - x_3$$

Better Machines vs. Better Algorithms

New machine.

- . Costs \$\$\$ or more.
- . Makes "everything" finish sooner.
- . Incremental quantitative improvements (Moore's Law).
- . May not help much with some problems.

New algorithm.

- Costs \$ or less.
- . Dramatic qualitative improvements possible! (million times faster)
- May make the difference, allowing specific problem to be solved.
- . May not help much with some problems.

Impact of Better Algorithms

Example 1: N-body-simulation.

- Simulate the gravitational interactions among N bodies.
 Physicists want N = # atoms in universe.
- Brute force method takes N² steps.
- Appel (1981). algorithm takes N log N time and enables new research.

Example 2: Discrete Fourier Transform (DFT).

- . Breaks down waveforms (sound) into periodic components.
 - foundation of signal processing
 - CD players, JPEG, analyzing astronomical data, etc.
- . Grade school method takes N² steps.
- Runge-König (1924), Cooley-Tukey (1965). FFT algorithm takes N log N time and enables new technology.

Case Study: Sorting

Sorting problem:

- Given an array of N integers, rearrange them so that they are in increasing order.
- Among most fundamental problems.

Case Study: Sorting

Sorting problem:

• Given an array of N integers, rearrange them so that they are in increasing order.

Insertion sort

Brute-force sorting solution.

- . Move left-to-right through array.
- . Exchange next element with larger elements to its left, one-by-one.

Gener	ric Item to Be Sorted		
Define generic Item type t Associated operations – less, show, swap, ra Example: integers.	3:		
	ITEM.h		
	typedef int Item;		
return 1 if a < b	<pre>int ITEMless(Item a, Item b); void ITEMshow(Item a);</pre>		
swap 2 Items	<pre>void ITEMswap(Item *pa, Item *pb); int ITEMscan(Item *pa);</pre>		

Profiling Insertion Sort Analytically

How long does insertion sort take?

- . Depends on number of elements N to sort.
- . Depends on specific input.
- Depends on how long compare and exchange operation takes.

Worst case.

- . Elements in reverse sorted order.
 - ith iteration requires i 1 compare and exchange operations
- total = 0 + 1 + 2 + . . . + N-1 = N (N-1) / 2

Profiling Insertion Sort Analytically

How long does insertion sort take?

- Depends on number of elements N to sort.
- Depends on specific input.
- Depends on how long compare and exchange operation takes.

Best case.

- . Elements in sorted order already.
 - ith iteration requires only 1 compare operation

- total = 0 + 1 + 1 + . . . + 1 = N -1

Profiling Insertion Sort Analytically

How long does insertion sort take?

- . Depends on number of elements N to sort.
- . Depends on specific input.
- Depends on how long compare and exchange operation takes.

Average case.

- . Elements are randomly ordered.
 - ith iteration requires i / 2 comparison on average
 - total = 0 + 1/2 + 2/2 + . . . + (N-1)/2 = N (N-1) / 4
 - check with profile: 249750 vs. 256313

Profiling Insertion Sort Analytically

How long does insertion sort take?

- . Depends on number of elements N to sort.
- . Depends on specific input.
- Depends on how long compare and exchange operation takes.

Worst case: N (N - 1) / 2.

Best case: N - 1.

Average case: N (N - 1) / 4.

Estimating the Running Time

Total run time:

. Sum over all instructions: frequency * cost.

Frequency:

- Determined by algorithm and input.
- . Can use lcc -b (or analysis) to help estimate.

Cost:

- Determined by compiler and machine.
- . Could estimate by lcc -s (plus manuals).

Estimating the Running Time

Easier alternative.

(i) Analyze asymptotic growth.(ii) For small N, run and measure time.

For large N, use (i) and (ii) to predict time.

Asymptotic growth rates.

- Estimate time as a function of input size.
 N, N log N, N², N³, 2^N, N!
- Big-Oh notation hides constant factors and lower order terms. – $6N^3$ + $17N^2$ + 56 $\,$ is O(N^3)

Insertion sort is $O(N^2)$. Takes 0.1 sec for N = 1,000.

- . How long for N = 10,000? 10 sec (100 times as long)
- N = 1 million? 1.1 days (another factor of 10⁴)
- N = 1 billion? 31 centuries (another factor of 10⁶)

Donald Knuth

Profiling Mergesort Analytically

How long does mergesort take?

- Bottleneck = merging (and copying).
 - merging two files of size N/2 requires N comparisons
- N log₂ N comparisons to sort ANY array of N elements. – even already sorted array!

How much space?

Sorting Case Study: quicksort

Insertion sort (brute-force) Mergesort (divide-and-conquer)

Quicksort (conquer-and-divide)

- Partition array so that:
 - some partitioning element a[m] is in its final position
 - no larger element to the left of ${\tt m}$
 - no smaller element to the right of m
- . Sort each "half" recursively.

quicksort.c (see Sedgewick Program 7.1)

```
void quicksort(Item a[], int left, int right) {
    int m;
    if (right > left) {
        m = partition(a, left, right);
        quicksort(a, left, m - 1);
        quicksort(a, m + 1, right);
     }
}
```


Profiling Quicksort Empirically

prof.out (cont)

Profiling Quicksort Analytically

Intuition.

- Assume all elements unique.
- . Assume we always select median as partition element.
- T(N) = # comparisons.

Partition on median element. Partition on rightmost element. Partition on rightmost element. Partition on random element. Partition on random

- slightly more than 10 times (about 12 seconds)

Sorting Analysis Summary

Running time estimates:

- . Home pc executes 10⁸ comparisons/second.
- Supercomputer executes 10¹² comparisons/second.

	Insertion Sort (N ²)			Quicksort (N lg N)		
computer	thousand	million	billion	thousand	million	billion
home pc	instant	2 hour	310 years	instant	0.3 sec	6 min
super	instant	1 sec	1.6 weeks	instant	instant	instant

- . Implementations and analysis validate each other.
- . Further refinements possible.
 - design-analysis-implement cycle

Good algorithms are more powerful than supercomputers.

Design and Analysis of Algorithms

Algorithm.

- . "Step-by-step recipe" used to solve a problem.
- Generally independent of programming language or machine on which it is to be executed.

Design.

Analysis.

Implementation.

Find a method to solve the problem.

and predict theoretical performance.

. Write actual code and test your theory.

. Evaluate its effectiveness

Sorting Analysis Summary

Comparison of Different Sorting Algorithms

Attribute	insertion	quicksort	mergesort
Worst case complexity	N ²	N ²	N log ₂ N
Best case complexity	N	N log ₂ N	N log ₂ N
Average case complexity	N ²	N log ₂ N	N log ₂ N
Already sorted	N	N ²	N log ₂ N
Reverse sorted	N ²	N ²	N log ₂ N
Space	N	N	2 N
Stable	yes	no	yes

Sorting algorithms have different performance characteristics.

- Other choices: bubblesort, heapsort, shellsort, selection sort, shaker sort, radix sort, BST sort, solitaire sort, hybrid methods.
- . Which one should I use?

C. P

Computational Complexity

Framework to study efficiency of algorithms.

- . Depends on machine model, average case, worst case.
- . UPPER BOUND = algorithm to solve the problem.
- . LOWER BOUND = proof that no algorithm can do better.
- OPTIMAL ALGORITHM: lower bound = upper bound.

Example: sorting.

- . Measure costs in terms of comparisons.
- Upper bound = N log₂ N (mergesort).
 quicksort usually faster, but mergesort never slow
- Lower bound = N log₂ N N log₂ e (applies to any comparison-based algorithm).
 Why?

Computational Complexity

Caveats.

- . Worst or average case may be unrealistic.
- . Costs ignored in analysis may dominate.
- Machine model may be restrictive.

Complexity studies provide:

- . Starting point for practical implementations.
- . Indication of approaches to be avoided.

Summary

How can I evaluate the performance of a proposed algorithm?

- . Computational experiments.
- . Complexity theory.

What if it's not fast enough?

- . Use a faster computer.
 - performance improves incrementally
- Understand why.
- Develop a better algorithm (if possible). - performance can improve dramatically

Lecture T5: Extra Slides

Average Case vs. Worst Case

Worst-case analysis.

- . Take running time of worst input of size N.
- Advantages:
 - performance guarantee
- Disadvantage:
 - pathological inputs can determine run time

Average case analysis.

- . Take average run time over all inputs of some class.
- Advantage:
 - can be more accurate measure of performance
- Disadvantage:
 - hard to quantify what input distributions will look like in practice
 - difficult to analyze for complicated algorithms, distributions
 - no performance guarantee

Profiling Quicksort Analytically

Average case.

- . Assume partition element chosen at random and all elements are unique.
- Denote ith largest element by i.
- Probability that i and j (where j > i) are compared = $\frac{2}{j-i+1}$

Expected # of comparisons = $\sum_{i < j} \frac{2}{j - i + 1} = 2 \sum_{i=1}^{N} \sum_{j=2}^{i} \frac{1}{j}$ $\leq 2N \sum_{j=1}^{N} \frac{1}{j}$ $\approx 2N \int_{1}^{N} \frac{1}{i}$ $= 2N \ln N$

Comparison Based Sorting Lower Bound

Comparison Based Sorting Lower Bound

Lower bound = $N \log_2 N$ (applies to any comparison-based algorithm).

- . Worst case dictated by tree height h.
- N! different orderings.
- . One (or more) leaves corresponding to each ordering.
- Binary tree with N! leaves must have

$$h \geq \log_{2}(N!)$$

$$\geq \log_{2}(N/e)^{N}$$

$$= N \log_{2} N - N \log_{2} e$$

$$= \Theta(N \log_{2} N)$$
Stirling's formula

52