Lecture T5: Analysis of Algorithm

Overview

Lecture T4:

- What is an algorithm?
- Turing machine.
- Is it possible, in principle, to write a program to solve any problem?
- No. Halting problem and others are unsolvable.

This Lecture:

- For many problems, there may be several competing algorithms.
- Which one should I use?
- Computational complexity:
- Rigorous and useful framework for comparing algorithms and predicting performance.
- Use sorting as a case study.

Historical Quest for Speed

Multiplication: $\mathrm{a} \times \mathrm{b}$.

- Naïve: add a to itself b times. $\mathrm{N} 2^{\mathrm{N}}$ steps
. Grade school. N ${ }^{2}$ steps
- Divide-and-conquer (1962). N ${ }^{1.58}$ steps representation of a, b
. Ingenuity (1971).
$N \log N \log \log N$ steps

Greatest common divisor: $\operatorname{gcd}(a, b)$.

- Naïve: factor a and b, then find $\operatorname{gcd}(a, b) .2^{N}$ steps
- Euclid $(20 B C E): \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$. N steps

Complex multiplication: $(a+b i)(c+d i)=x+y i$.

- Naïve: $x=a c-b d, y=b c+a d .4$ multiplications
- Gauss (1800): 3 multiplications
$-x_{1}=(a+b)(c+d), x_{2}=a c, x_{3}=b d$
$-x=x_{2}-x_{3}, y=x_{1}-x_{2}-x_{3}$

Better Machines vs. Better Algorithms

New machine.

. Costs \$\$\$ or more.
. Makes "everything" finish sooner.

- Incremental quantitative improvements (Moore's Law).
- May not help much with some problems.

New algorithm.

- Costs \$ or less.
- Dramatic qualitative improvements possible! (million times faster)
. May make the difference, allowing specific problem to be solved.
. May not help much with some problems.

Impact of Better Algorithms

Example 1: N -body-simulation.

- Simulate the gravitational interactions among \mathbf{N} bodies.
- Physicists want $\mathrm{N}=$ \# atoms in universe.
- Brute force method takes N^{2} steps.
- Appel (1981). algorithm takes \mathbf{N} log N time and enables new research.

Example 2: Discrete Fourier Transform (DFT).

- Breaks down waveforms (sound) into periodic components.
- foundation of signal processing
- CD players, JPEG, analyzing astronomical data, etc.
- Grade school method takes \mathbf{N}^{2} steps.
- Runge-König (1924), Cooley-Tukey (1965). FFT algorithm takes $\mathrm{N} \log \mathrm{N}$ time and enables new technology.

Case Study: Sorting

Sorting problem:

- Given an array of \mathbf{N} integers, rearrange them so that they are in increasing order.

Insertion sort

- Brute-force sorting solution.
- Move left-to-right through array.
- Exchange next element with larger elements to its left, one-by-one.

Case Study: Sorting

Sorting problem:

- Given an array of \mathbf{N} integers, rearrange them so that they are in increasing order.
- Among most fundamental problems.

Generic Item to Be Sorted

Define generic Item type to be sorted.

- Associated operations:
- less, show, swap, rand
. Example: integers.

	ITEM.h
	```typedef int Item; int ITEMless(Item a, Item b); void ITEMshow(Item a); void ITEMswap(Item *pa, Item *pb); int ITEMscan(Item *pa);```
return 1 if a < b , $>$	
swap 2 Items $\longrightarrow$	



## Insertion Sort Function

```
insertionsort.c (see Sedgewick Program 6.1)
void insertionsort(Item a[], int left, int right) {
 int i, j;
 for (i = left + 1; i <= right; i++)
 for (j = i; j > left; j--)
 if (ITEMless(a[j], a[j-1]))
 ITEMswap(&a[j], &a[j-1]);
 else
 break;
}
```


## Generic Sorting Program



## Profiling Insertion Sort Empirically

Use Icc "profiling" capability.

- Automatically generates a file "prof.out" that has frequency counts for each instruction.
- Striking feature:
- HUGE numbers!

Unix
$\%$ lcc -b insertion.c
$\%$ a.out < sort1000.txt
$\%$ bprint

## prof.out

void insertionsort (Item a[], int left, int right) <1>\{ int i, j;
for (<1>i = left +1 ; <1000>i <= right; <999>i++) for (<999>j = i; <256320>j > left; <255321>j-if (<256313>ITEMless(a[j], a[j-1]))
<255321>ITEMswap(\&a[j], \&a[j-1]);
else
<992>break;
$<1>\}$

## Profiling Insertion Sort Analytically

How long does insertion sort take?
. Depends on number of elements $\mathbf{N}$ to sort.
. Depends on specific input.
. Depends on how long compare and exchange operation takes.

Worst case.

- Elements in reverse sorted order.
- $\mathrm{i}^{\text {th }}$ iteration requires $\mathrm{i}-1$ compare and exchange operations
- total $=0+1+2+\ldots+\mathrm{N}-1=\mathrm{N}(\mathrm{N}-1) / 2$


## Profiling Insertion Sort Analytically

How long does insertion sort take?
. Depends on number of elements $\mathbf{N}$ to sort.

- Depends on specific input.
- Depends on how long compare and exchange operation takes

Best case.

- Elements in sorted order already.
- $\mathrm{i}^{\text {th }}$ iteration requires only 1 compare operation
- total $=0+1+1+\ldots+1=\mathrm{N}-1$



## Profiling Insertion Sort Analytically

How long does insertion sort take?

- Depends on number of elements $\mathbf{N}$ to sort.
- Depends on specific input.
- Depends on how long compare and exchange operation takes.

Worst case: $\mathbf{N ( N - 1 ) / 2 .}$

Best case: N-1.

Average case: $\mathbf{N ( N - 1 ) / 4 .}$

## Estimating the Running Time

## Total run time:

- Sum over all instructions: frequency * cost.

Frequency:

- Determined by algorithm and input.
- Can use lcc -b (or analysis) to help estimate.

Cost:
. Determined by compiler and machine.

- Could estimate by lcc -s (plus manuals).


## Estimating the Running Time

Easier alternative.
(i) Analyze asymptotic growth.
(ii) For small N , run and measure time.

For large $\mathbf{N}$, use (i) and (ii) to predict time.

Asymptotic growth rates.

- Estimate time as a function of input size.


Donald Knuth

$$
-\mathbf{N}, \mathbf{N} \log \mathbf{N}, \mathbf{N}^{2}, \mathbf{N}^{3}, \mathbf{2}^{\mathrm{N}}, \mathbf{N}!
$$

- Big-Oh notation hides constant factors and lower order terms. $-6 N^{3}+17 N^{2}+56$ is $\mathrm{O}\left(\mathrm{N}^{3}\right)$

Insertion sort is $\mathrm{O}\left(\mathrm{N}^{2}\right)$. Takes 0.1 sec for $\mathrm{N}=1,000$.

- How long for $\mathbf{N}=10,000$ ? 10 sec ( 100 times as long)
- $\mathrm{N}=1$ million? 1.1 days (another factor of $1 \mathbf{1 0}^{4}$ )
- $N=1$ billion? 31 centuries (another factor of $10^{6}$ )


## Sorting Case Study: mergesort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)

- Divide array into two halves.


## Sorting Case Study: mergesort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)

- Divide array into two halves.
- Sort each half separately. How do we sort half size files? 2



## Sorting Case Study: mergesort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)
. Divide array into two halves.

- Sort each half separately.
- Merge two halves to make sorted whole.
o


$\mathbf{E}$	$\mathbf{E}$	$\mathbf{E}$	$\mathbf{G}$	$\mathbf{M}$	$\mathbf{M}$	$\mathbf{O}$	$\mathbf{R}$	$\mathbf{R}$	$\mathbf{S}$	$\mathbf{T}$

merge

## Profiling Mergesort Analytically

How long does mergesort take?

- Bottleneck = merging (and copying).
- merging two files of size $\mathrm{N} / 2$ requires N comparisons
- $\mathbf{N} \log _{2} \mathbf{N}$ comparisons to sort ANY array of $\mathbf{N}$ elements.
- even already sorted array!

How much space?


## Profiling Mergesort Analytically

How long does mergesort take?

- Bottleneck = merging (and copying).
- merging two files of size $\mathbf{N} / 2$ requires $\mathbf{N}$ comparisons
- $T(N)=$ comparisons to mergesort array of N elements.
$T(N)=\left\{\begin{array}{cl}\begin{array}{ll}0 & \text { if } N=1 \\ \underbrace{2 T(N / 2)}_{\text {sorting both halves }}\end{array}+\underbrace{N}_{\text {merging }} & \text { otherwise }\end{array}\right.$

Unwind recurrence: (assume $\mathbf{N}=\mathbf{2}^{\mathrm{k}}$ ).

```
T(N) = 2T(N/2) + N = 2(2T(N/4) +N/2) +N
= 4T(N/4) + 2N = 4(2 T(N/8) +N/4) + 2N
= 8T(N/8) + 3N
= 16 T(N/16) + 4N
= NT(1) + k N
= O+N 知的N
```


## Implementing Mergesort

mergesort (see Sedgewick Program 8.3)

```
Item aux [MAXN];
uses scratch array
void mergesort(Item a[], int left, int right) {
 int mid = (right + left) / 2;
 if (right <= left)
 return;
 mergesort(a, left, mid);
 mergesort(a, mid + 1, right);
 merge(a, left, mid, right);
}
```


## Implementing Mergesort

merge (see Sedgewick Program 8.2)
void merge (Item a[], int left, int mid, int right) \{ int i, j, k
for (i = mid+1; i > left; i--)
aux[i-1] = a[i-1];
for ( $j=$ mid; $j<r i g h t ; ~ j++)$
aux[right+mid-j] $=a[j+1]$
for (k = left; $k$ < right; $k++$ )
if (ITEMless (aux[i], aux[j])) merge two sorted $a[k]=$ aux[i++];
else
$a[k]=a u x[j--] ;$
\}


## Sorting Case Study: quicksort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)
Quicksort (conquer-and-divide)

- Partition array so that:
- some partitioning element $a[m]$ is in its final position
- no larger element to the left of $m$
- no smaller element to the right of $m$
. Sort each "half" recursively.

$\mathbf{Q}$	$\mathbf{U}$	$\mathbf{I}$	$\mathbf{C}$	$\mathbf{K}$	$\mathbf{S}$	$\mathbf{O}$	$\mathbf{R}$	$\mathbf{T}$	$\mathbf{I}$	$\mathbf{S}$	$\mathbf{C}$	$\mathbf{O}$	$\mathbf{O}$	$\mathbf{I}$
$\mathbf{I}$	$\mathbf{C}$	$\mathbf{K}$	$\mathbf{I}$	$\mathbf{C}$	$\mathbf{I}$	$\mathbf{Q}$	$\mathbf{U}$	$\mathbf{S}$	$\mathbf{O}$	$\mathbf{R}$	$\mathbf{T}$	$\mathbf{S}$	$\mathbf{O}$	$\mathbf{O}$

Sort each half.

## Sorting Case Study: quicksort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)
Quicksort (conquer-and-divide)

- Partition array so that:
- some partitioning element $a[m]$ is in its final position
- no larger element to the left of $m$ partitioning element
$\sqrt{3}$

partitioned array


## Sorting Case Study: quicksort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)
Quicksort (conquer-and-divide)

- Partition array so that:
- some partitioning element $a[m]$ is in its final position
- no larger element to the left of $m$
- no smaller element to the right of $m$ partitioning
. Sort each "half" recursively.



## Sorting Case Study: quicksort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)
Quicksort (conquer-and-divide)

- Partition array so that:
- some partitioning element a[m] is in its final position
- no larger element to the left of $m$
- no smaller element to the right of $m$
. Sort each "half" recursively.


## quicksort.c (see Sedgewick Program 7.1)

void quicksort (Item a[], int left, int right) \{ int m;
if (right > left) \{
m = partition(a, left, right);
quicksort (a, left, m - 1); quicksort(a, m + 1, right);
\} $\}$

## Sorting Case Study: quicksort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)
Quicksort (conquer-and-divide)

- Partition array so that:
- some partitioning element a[m] is in its final position
- no larger element to the left of $m$
- no smaller element to the right of $m$
. Sort each "half" recursively.
- How do we partition efficiently?
- N-1 comparisons
- easy with auxiliary array
- better solution: use no extra space! $\square$


## Implementing Partition

partition (see Sedgewick Program 7.2)
int partition(Item a[], int left, int right) \{
int i = left-1; /* left to right pointer */
int j = right; /* right to left pointer */
Item $\mathrm{p}=\mathrm{a}$ [right]; /* partition element
for (; ; ) \{

break;

break;
ITEMswap(\&a[i], \&a[j]);
\}
ITEMswap (\&a[i], \&a[right]); swap partition return i;
\}

Profiling Quicksort Empirically

```
prof.out
void quicksort(Item a[], int left, int right) <1337>{
 int p;
 if (<1337>right <= left)
 return<669>;
 <668>p = partition(a, left, right);
 <668>quicksort(a, left, p-1);
 <668>quicksort(a, p+1, right);
<1337>}
```

Profiling Quicksort Empirically

```
prof.out (cont)
int partition(Item a[], int left, int right) <668>{
 int i = <668>left-1, j = <668>right;
 Item swap, p = <668>a[right];
 for(<668>;<1678>;<1678>) {
 while (<5708>ITEMless(a[++i], p))
 <3362>;
 while (<6664>ITEMless(p, a[--j]))
 if (<4495>j == left) Striking feature: no
 <177>break;
 if (<2346>i >= j) HUGE numbers!
 <668>break;
 <1678>ITEMswap(&a[i], &a[j]);
 }
 <668>ITEMswap(&a[i], &a[right]);
 return <668>i;
<668>}
```


## Profiling Quicksort Analytically

Intuition.

- Assume all elements unique.
- Assume we always select median as partition element.
- $\mathrm{T}(\mathrm{N})=$ \# comparisons
$\mathbf{T}(N)=\left\{\begin{array}{cl}\begin{array}{ll}0 & \text { if } N=1 \\ \underbrace{2 T(N / 2)}_{\text {sorting both halves }}+\underbrace{N}_{\text {partitioning }} & \text { otherwise }\end{array} \\ \hline\end{array}\right.$

If $\mathbf{N}$ is a power of 2.
$\Rightarrow \mathrm{T}(\mathrm{N})=\mathbf{N} \log _{2} \mathbf{N}$

Can you find median in $\mathrm{O}(\mathrm{N})$ time?

## Sorting Analysis Summary

Running time estimates:

- Home pc executes $10^{8}$ comparisons/second.
- Supercomputer executes $10^{12}$ comparisons/second.

Insertion Sort ( $\boldsymbol{N}^{*}$ )

computer	thousand	million	billion	thousand		
home pr	instant	2 hour	310 years		billion	
super	instant	1 sec	1.6 weeks		instant   instant	0.3 sec
instant	instan	instant				

- Implementations and analysis validate each other.
- Further refinements possible.
- design-analysis-implement cycle

Good algorithms are more powerful than supercomputers.

## Design and Analysis of Algorithms

Algorithm.
. "Step-by-step recipe" used to solve a problem.

- Generally independent of programming language or machine on which it is to be executed.


## Design.

- Find a method to solve the problem.


## Analysis.

- Evaluate its effectiveness and predict theoretical performance.

Implementation.


- Write actual code and test your theory.


## Sorting Analysis Summary

Comparison of Different Sorting Algorithms

Attribute	insertion	quicksort\|	mergesort
Worst case complexity	$\mathrm{N}^{2}$	$\mathrm{~N}^{2}$	$\mathrm{~N} \log _{2} \mathrm{~N}$
Best case complexity	N	$\mathrm{N} \log _{2} \mathrm{~N}$	$\mathrm{~N} \log _{2} \mathrm{~N}$
Average case complexity	$\mathrm{N}^{2}$	$\mathrm{~N} \log _{2} \mathrm{~N}$	$\mathrm{~N} \log _{2} \mathrm{~N}$
Already sorted	N	$\mathrm{N}^{2}$	$\mathrm{~N} \log _{2} \mathrm{~N}$
Reverse sorted	$\mathrm{N}^{2}$	$\mathrm{~N}^{2}$	$\mathrm{~N} \log _{2} \mathrm{~N}$
Space	N	N	2 N
Stable	yes	no	yes

Sorting algorithms have different performance characteristics.

- Other choices: bubblesort, heapsort, shellsort, selection sort, shaker sort, radix sort, BST sort, solitaire sort, hybrid methods.
. Which one should I use?


## Computational Complexity

Framework to study efficiency of algorithms.

- Depends on machine model, average case, worst case.
. UPPER BOUND = algorithm to solve the problem.
- LOWER BOUND = proof that no algorithm can do better.
- OPTIMAL ALGORITHM: lower bound = upper bound.

Example: sorting.

- Measure costs in terms of comparisons.
- Upper bound $=\mathbf{N} \log _{2} \mathrm{~N}$ (mergesort).
- quicksort usually faster, but mergesort never slow
- Lower bound $=\mathrm{N} \log _{2} \mathrm{~N}-\mathrm{N} \log _{2} \mathrm{e}$ (applies to any comparison-based algorithm).
- Why?


## Computational Complexity

Caveats.

- Worst or average case may be unrealistic.
- Costs ignored in analysis may dominate.
- Machine model may be restrictive.

Complexity studies provide:

- Starting point for practical implementations.
- Indication of approaches to be avoided.


## Summary

How can I evaluate the performance of a proposed algorithm?

- Computational experiments.
- Complexity theory.

What if it's not fast enough?

- Use a faster computer.
- performance improves incrementally
. Understand why.
- Develop a better algorithm (if possible).
- performance can improve dramatically


## Lecture T5: Extra Slides



## Profiling Quicksort Analytically

## Average case.

. Assume partition element chosen at random and all elements are unique.

- Denote $\mathrm{ith}^{\text {th }}$ largest element by i .
- Probability that $i$ and $j$ (where $j>i$ ) are compared $=\frac{2}{j-i+1}$

Expected \# of comparisons $=\quad \sum_{i<j} \frac{2}{j-i+1}=2 \sum_{i=1}^{N} \sum_{j=2}^{i} \frac{1}{j}$
$\leq 2 N \sum_{j=1}^{N} \frac{1}{j}$
$\approx 2 N \int_{1}^{N} \frac{1}{j}$
$=2 N \ln N$

## Comparison Based Sorting Lower Bound



## Decision Tree of Program

## Comparison Based Sorting Lower Bound

Lower bound $=\mathbf{N} \log _{2} \mathbf{N}$ (applies to any comparison-based algorithm).

- Worst case dictated by tree height $h$.
- N! different orderings.
- One (or more) leaves corresponding to each ordering.
- Binary tree with N! leaves must have

$$
h \geq \log _{2}(N!)
$$

$\geq \log _{2}(N / e)^{N}$
$=N \log _{2} N-N \log _{2} e$
$=\Theta\left(N \log _{2} N\right)$

