
Lecture T5: Analysis of Algorithm

2

Overview

Lecture T4:

■ What is an algorithm?
– Turing machine.

■ Is it possible, in principle, to write a program to solve any
problem?

– No. Halting problem and others are unsolvable.

This Lecture:

■ For many problems, there may be several competing algorithms.
– Which one should I use?

■ Computational complexity:
– Rigorous and useful framework for comparing algorithms and

predicting performance.

■ Use sorting as a case study.

3

Historical Quest for Speed

Multiplication: a × b.

■ Naïve: add a to itself b times. N 2N steps

■ Grade school. N2 steps

■ Divide-and-conquer (1962). N1.58 steps

■ Ingenuity (1971).
N log N log log N steps

Greatest common divisor: gcd(a, b).

■ Naïve: factor a and b, then find gcd(a, b). 2N steps

■ Euclid (20 BCE): gcd(a, b) = gcd(b, a mod b). N steps

Complex multiplication: (a + bi)(c + di) = x + yi.

■ Naïve: x = ac - bd, y = bc + ad. 4 multiplications

■ Gauss (1800): 3 multiplications
– x1 = (a + b)(c + d), x2 = ac, x3 = bd
– x = x2 - x3, y = x1 - x2 - x3

N = # bits in binary
representation of a, b

4

Better Machines vs. Better Algorithms

New machine.

■ Costs $$$ or more.

■ Makes "everything" finish sooner.

■ Incremental quantitative improvements (Moore’s Law).

■ May not help much with some problems.

New algorithm.

■ Costs $ or less.

■ Dramatic qualitative improvements possible! (million times faster)

■ May make the difference, allowing specific problem to be solved.

■ May not help much with some problems.

5

Impact of Better Algorithms

Example 1: N-body-simulation.

■ Simulate the gravitational interactions among N bodies.
– Physicists want N = # atoms in universe.

■ Brute force method takes N2 steps.

■ Appel (1981). algorithm takes N log N time
and enables new research.

Example 2: Discrete Fourier Transform (DFT).

■ Breaks down waveforms (sound) into periodic components.

– foundation of signal processing
– CD players, JPEG, analyzing astronomical data, etc.

■ Grade school method takes N2 steps.

■ Runge-König (1924), Cooley-Tukey (1965). FFT algorithm takes
N log N time and enables new technology.

6

Case Study: Sorting

Sorting problem:

■ Given an array of N integers, rearrange them so that they are in
increasing order.

■ Among most fundamental problems.

Hanley

name

Haskell

Hauser

Hayes

Hill

Hong

Hornet

Hsu

Hauser

name

Hong

Hsu

Hayes

Haskell

Hanley

Hornet

Hill

7

Sorting problem:

■ Given an array of N integers, rearrange them so that they are in
increasing order.

Insertion sort

■ Brute-force sorting solution.

■ Move left-to-right through array.

■ Exchange next element with larger elements to its left, one-by-one.

Case Study: Sorting

8

Generic Item to Be Sorted

Define generic Item type to be sorted.

■ Associated operations:
– less, show, swap, rand

■ Example: integers.

typedef int Item;

int ITEMless(Item a, Item b);
void ITEMshow(Item a);
void ITEMswap(Item *pa, Item *pb);
int ITEMscan(Item *pa);

ITEM.h

swap 2 Items

return 1 if a < b

9

Item Implementation

#include <stdio.h>
#include "ITEM.h"

int ITEMless(Item a, Item b) {
return (a < b);

}

void ITEMswap(Item *pa, Item *pb) {
Item t;
t = *pa; *pa = *pb; *pb = t;

}

void ITEMshow(Item a) {
printf("%d\n", a);

}

void ITEMscan(Item *pa) {
return scanf("%d", pa);

}

item.c

swap integers – need
to use pointers

10

Generic Sorting Program

#include <stdio.h>
#include <stdlib.h>
#include "Item.h"
#define N 2000000

int main(void) {
int i, n = 0;
Item a[N];

while(ITEMscan(&a[n]) != EOF)
n++;

sort(a, 0, n-1);

for (i = 0; i < n; i++)
ITEMshow(a[i]);

return 0;
}

sort.c (see Sedgewick 6.1)

Read input.

Call generic sort
function.

Print results.

Max number of
items to sort.

11

Insertion Sort Function

void insertionsort(Item a[], int left, int right) {
int i, j;

for (i = left + 1; i <= right; i++)
for (j = i; j > left; j--)

if (ITEMless(a[j], a[j-1]))
ITEMswap(&a[j], &a[j-1]);

else
break;

}

insertionsort.c (see Sedgewick Program 6.1)

12

Profiling Insertion Sort Empirically

Use lcc “profiling” capability.

■ Automatically generates a file “prof.out” that has frequency counts
for each instruction.

■ Striking feature:
– HUGE numbers! % lcc -b insertion.c

% a.out < sort1000.txt
% bprint

Unix

void insertionsort(Item a[], int left, int right) <1>{
int i, j;
for (<1>i = left + 1; <1000>i <= right; <999>i++)

for (<999>j = i; <256320>j > left; <255321>j--)
if (<256313>ITEMless(a[j], a[j-1]))

<255321>ITEMswap(&a[j], &a[j-1]);
else

<992>break;
<1>}

prof.out

13

Profiling Insertion Sort Analytically

How long does insertion sort take?

■ Depends on number of elements N to sort.

■ Depends on specific input.

■ Depends on how long compare and exchange operation takes.

Worst case.

■ Elements in reverse sorted order.
– ith iteration requires i - 1 compare and exchange operations
– total = 0 + 1 + 2 + . . . + N-1 = N (N-1) / 2

E F G H I J D C B A

unsorted active sorted

14

Profiling Insertion Sort Analytically

How long does insertion sort take?

■ Depends on number of elements N to sort.

■ Depends on specific input.

■ Depends on how long compare and exchange operation takes.

Best case.

■ Elements in sorted order already.
– ith iteration requires only 1 compare operation
– total = 0 + 1 + 1 + . . . + 1 = N -1

A B C D E F G H I J

unsorted active sorted

15

Profiling Insertion Sort Analytically

How long does insertion sort take?

■ Depends on number of elements N to sort.

■ Depends on specific input.

■ Depends on how long compare and exchange operation takes.

Average case.

■ Elements are randomly ordered.
– ith iteration requires i / 2 comparison on average
– total = 0 + 1/2 + 2/2 + . . . + (N-1)/2 = N (N-1) / 4
– check with profile: 249750 vs. 256313

B E F R T U O R C E

unsorted active sorted

16

Profiling Insertion Sort Analytically

How long does insertion sort take?

■ Depends on number of elements N to sort.

■ Depends on specific input.

■ Depends on how long compare and exchange operation takes.

Worst case: N (N - 1) / 2.

Best case: N - 1.

Average case: N (N – 1) / 4.

17

Estimating the Running Time

Total run time:

■ Sum over all instructions: frequency * cost.

Frequency:

■ Determined by algorithm and input.

■ Can use lcc -b (or analysis) to help estimate.

Cost:

■ Determined by compiler and machine.

■ Could estimate by lcc -S (plus manuals).

18

Easier alternative.

(i) Analyze asymptotic growth.

(ii) For small N, run and measure time.

For large N, use (i) and (ii) to predict time.

Asymptotic growth rates.

■ Estimate time as a function of input size.
– N, N log N, N2, N3, 2N, N!

■ Big-Oh notation hides constant factors and lower order terms.
– 6N3 + 17N2 + 56 is O(N3)

Insertion sort is O(N2). Takes 0.1 sec for N = 1,000.

■ How long for N = 10,000? 10 sec (100 times as long)

■ N = 1 million? 1.1 days (another factor of 104)

■ N = 1 billion? 31 centuries (another factor of 106)

Estimating the Running Time

Donald Knuth

20

Sorting Case Study: mergesort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)

■ Divide array into two halves.

M E R G E S O R T M E

O R T M EM E R G E S divide

22

M E R G E S O R T M E

O R T M EM E R G E S divide

E M O R TE E G M R S sort

Sorting Case Study: mergesort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)

■ Divide array into two halves.

■ Sort each half separately. How do we sort half size files?
! Any sorting algorithm will do.
! Use mergesort recursively!

23

Sorting Case Study: mergesort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)

■ Divide array into two halves.

■ Sort each half separately.

■ Merge two halves to make sorted whole.
! How do we merge efficiently?

M E R G E S O R T M E

O R T M EM E R G E S divide

E M O R TE E G M R S sort

E E E G M M O R R S T merge

24

Profiling Mergesort Analytically

How long does mergesort take?

■ Bottleneck = merging (and copying).
– merging two files of size N/2 requires N comparisons

■ T(N) = comparisons to mergesort
array of N elements.

{







+
=

= otherwise)2/(2

1 if0
)T(

merginghalves both sorting

NNT
N

N
43421

Unwind recurrence: (assume N = 2k).

T(N) = 2 T(N/2) + N = 2 (2 T(N/4) + N/2) + N
= 4 T(N/4) + 2N = 4 (2 T(N/8) + N/4) + 2N
= 8 T(N/8) + 3N
= 16 T(N/16) + 4N
. . .

= N T(1) + k N
= 0 + N log2 N

25

Profiling Mergesort Analytically

How long does mergesort take?

■ Bottleneck = merging (and copying).
– merging two files of size N/2 requires N comparisons

■ N log2 N comparisons to sort ANY array of N elements.
– even already sorted array!

How much space?
! Can’t do "in-place" like insertion sort.
! Need extra array of size N.

26

Implementing Mergesort

Item aux[MAXN];

void mergesort(Item a[], int left, int right) {
int mid = (right + left) / 2;
if (right <= left)

return;
mergesort(a, left, mid);
mergesort(a, mid + 1, right);
merge(a, left, mid, right);

}

mergesort (see Sedgewick Program 8.3)

uses scratch array

27

Implementing Mergesort

void merge(Item a[], int left, int mid, int right) {
int i, j, k;

for (i = mid+1; i > left; i--)
aux[i-1] = a[i-1];

for (j = mid; j < right; j++)
aux[right+mid-j] = a[j+1];

for (k = left; k <= right; k++)
if (ITEMless(aux[i], aux[j]))

a[k] = aux[i++];
else

a[k] = aux[j--];
}

merge (see Sedgewick Program 8.2)

copy to
temporary array

merge two sorted
sequences

29

Sorting Case Study: quicksort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)
Quicksort (conquer-and-divide)

■ Partition array so that:
– some partitioning element a[m] is in its final position
– no larger element to the left of m
– no smaller element to the right of m

Q U I C K S O R T I S C O O L

partitioning
element

I C K I C L Q U S O R T S O O

partitioned array

≤ L ≥ L

30

Sorting Case Study: quicksort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)
Quicksort (conquer-and-divide)

■ Partition array so that:
– some partitioning element a[m] is in its final position
– no larger element to the left of m
– no smaller element to the right of m

■ Sort each "half" recursively.

Q U I C K S O R T I S C O O L

partitioning
element

I C K I C L Q U S O R T S O O

I C K I C Q U S O R T S O O

Sort each half.

31

Sorting Case Study: quicksort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)
Quicksort (conquer-and-divide)

■ Partition array so that:
– some partitioning element a[m] is in its final position
– no larger element to the left of m
– no smaller element to the right of m

■ Sort each "half" recursively.

Q U I C K S O R T I S C O O L

partitioning
element

I C K I C L Q U S O R T S O O

C C I I K O O O Q R S S T U

32

Sorting Case Study: quicksort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)
Quicksort (conquer-and-divide)

■ Partition array so that:
– some partitioning element a[m] is in its final position
– no larger element to the left of m
– no smaller element to the right of m

■ Sort each "half" recursively.

void quicksort(Item a[], int left, int right) {
int m;
if (right > left) {

m = partition(a, left, right);
quicksort(a, left, m - 1);
quicksort(a, m + 1, right);

}
}

quicksort.c (see Sedgewick Program 7.1)

33

Sorting Case Study: quicksort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)
Quicksort (conquer-and-divide)

■ Partition array so that:
– some partitioning element a[m] is in its final position
– no larger element to the left of m
– no smaller element to the right of m

■ Sort each "half" recursively.

■ How do we partition efficiently?
– N - 1 comparisons
– easy with auxiliary array
– better solution: use no extra space!

34

int partition(Item a[], int left, int right) {
int i = left-1; /* left to right pointer */
int j = right; /* right to left pointer */
Item p = a[right]; /* partition element */

for(;;) {
while (ITEMless(a[++i], p))

;
while (ITEMless(p, a[--j]))

if (j == left)
break;

if (i >= j)
break;

ITEMswap(&a[i], &a[j]);
}

ITEMswap(&a[i], &a[right]);
return i;

}

partition (see Sedgewick Program 7.2)

Implementing Partition

find element on left to swap

look for element on right to
swap, but don’t run off end

pointers cross

swap partition
element

35

Profiling Quicksort Empirically

void quicksort(Item a[], int left, int right) <1337>{
int p;
if (<1337>right <= left)

return<669>;
<668>p = partition(a, left, right);
<668>quicksort(a, left, p-1);
<668>quicksort(a, p+1, right);

<1337>}

prof.out

Striking feature: no
HUGE numbers!

36

int partition(Item a[], int left, int right) <668>{
int i = <668>left-1, j = <668>right;
Item swap, p = <668>a[right];

for(<668>;<1678>;<1678>) {
while (<5708>ITEMless(a[++i], p))

<3362>;
while (<6664>ITEMless(p, a[--j]))

if (<4495>j == left)
<177>break;

if (<2346>i >= j)
<668>break;

<1678>ITEMswap(&a[i], &a[j]);
}
<668>ITEMswap(&a[i], &a[right]);
return <668>i;

<668>}

prof.out (cont)

Profiling Quicksort Empirically

Striking feature: no
HUGE numbers!

37

Profiling Quicksort Analytically

Intuition.

■ Assume all elements unique.

■ Assume we always select median as partition element.

■ T(N) = # comparisons.

! Analysis "almost true" if you partition
on random element.

Can you find median in O(N) time?
! Yes, see COS 226/423.

{






+
=

= otherwise)2/(2

1 if0
)T(

ngpartitionihalves both sorting

NNT

N
N

43421

If N is a power of 2.
⇒ T(N) = N log2 N

Bob Tarjan, et al (1973)

38

Profiling Quicksort Analytically

Partition on median element.
! O(N log2 N) best and worst case.

Partition on rightmost element.
! O(N2) worst case.
! Already sorted file: takes N2/2 + N/2 comparisons.

Partition on random element.
! Roughly 2 N log e N steps.
! Choose random partition element.

Check profile.

■ 2 N log e N: 13815 vs. 12372 (5708 + 6664).

■ Running time for N = 100,000 about 1.2 seconds.

■ How long for N = 1 million ?
– slightly more than 10 times (about 12 seconds)

39

Sorting Analysis Summary

Running time estimates:

■ Home pc executes 108 comparisons/second.

■ Supercomputer executes 1012 comparisons/second.

■ Implementations and analysis validate each other.

■ Further refinements possible.
– design-analysis-implement cycle

Good algorithms are more powerful than supercomputers.

 Insertion Sort (N2)
computer thousand million billion

home pc instant 2 hour 310 years

super instant 1 sec 1.6 weeks

Quicksort (N lg N)
thousand million billion

instant 0.3 sec 6 min

instant instant instant

40

Design and Analysis of Algorithms

Algorithm.

■ "Step-by-step recipe" used to solve a problem.

■ Generally independent of programming language or machine on
which it is to be executed.

Design.

■ Find a method to solve the problem.

Analysis.

■ Evaluate its effectiveness
and predict theoretical performance.

Implementation.

■ Write actual code and test your theory.

A
na

ly
si

s

Implement

D
esign

41

 Comparison of Different Sorting Algorithms
Attribute insertion quicksort mergesort

Worst case complexity N2 N2 N log2 N

Best case complexity N N log2 N N log2 N

Average case complexity N2 N log2 N N log2 N

Already sorted N N2 N log2 N

Reverse sorted N2 N2 N log2 N

Space N N 2 N

Stable yes no yes

Sorting Analysis Summary

Sorting algorithms have different performance characteristics.

■ Other choices: bubblesort, heapsort, shellsort, selection sort,
shaker sort, radix sort, BST sort, solitaire sort, hybrid methods.

■ Which one should I use?
! Depends on application.

42

Computational Complexity

Framework to study efficiency of algorithms.

■ Depends on machine model, average case, worst case.

■ UPPER BOUND = algorithm to solve the problem.

■ LOWER BOUND = proof that no algorithm can do better.

■ OPTIMAL ALGORITHM: lower bound = upper bound.

Example: sorting.
■ Measure costs in terms of comparisons.

■ Upper bound = N log2 N (mergesort).
– quicksort usually faster, but mergesort never slow

■ Lower bound = N log2 N - N log2 e
(applies to any comparison-based algorithm).

– Why?

43

Computational Complexity

Caveats.

■ Worst or average case may be unrealistic.

■ Costs ignored in analysis may dominate.

■ Machine model may be restrictive.

Complexity studies provide:

■ Starting point for practical implementations.

■ Indication of approaches to be avoided.

44

Summary

How can I evaluate the performance of a proposed algorithm?

■ Computational experiments.

■ Complexity theory.

What if it’s not fast enough?

■ Use a faster computer.
– performance improves incrementally

■ Understand why.

■ Develop a better algorithm (if possible).
– performance can improve dramatically

Lecture T5: Extra Slides

48

Average Case vs. Worst Case

Worst-case analysis.

■ Take running time of worst input of size N.

■ Advantages:
– performance guarantee

■ Disadvantage:
– pathological inputs can determine run time

Average case analysis.

■ Take average run time over all inputs of some class.

■ Advantage:
– can be more accurate measure of performance

■ Disadvantage:
– hard to quantify what input distributions will look like in practice
– difficult to analyze for complicated algorithms, distributions
– no performance guarantee

50

Profiling Quicksort Analytically

Average case.

■ Assume partition element chosen at random and all elements are
unique.

■ Denote ith largest element by i.

■ Probability that i and j (where j > i) are compared = 1
2

+− ij

Expected # of comparisons =

NN
j

N

j
N

jij

N

N

j

N

i

i

jji

ln2

1
2

1
2

1
2

1
2

1

1

1 2

=

∫≈

∑≤

∑ ∑=∑
+−

=

= =<

51

Comparison Based Sorting Lower Bound

a1 < a2

a1 < a3

a2 < a3 a1 < a3

a2 < a32, 1, 3

2, 3, 1 3, 2, 11, 3, 2 3, 1, 2

1, 2, 3

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

Decision Tree of Program

52

Comparison Based Sorting Lower Bound

Lower bound = N log2N (applies to any comparison-based algorithm).

■ Worst case dictated by tree height h.

■ N! different orderings.

■ One (or more) leaves corresponding to each ordering.

■ Binary tree with N! leaves must have

)log(

loglog

)/(log

)!(log

2

22

2

2

NN

eNNN

eN

Nh
N

Θ=
−=

≥
≥

Stirling’s formula

