
Lecture T5:  Analysis of Algorithm
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Overview

Lecture T4:

■ What is an algorithm?
– Turing machine.

■ Is it possible, in principle, to write a program to solve any 
problem?

– No.  Halting problem and others are unsolvable.

This Lecture:

■ For many problems, there may be several competing algorithms.
– Which one should I use?

■ Computational complexity:
– Rigorous and useful framework for comparing algorithms and 

predicting performance.

■ Use sorting as a case study.
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Historical Quest for Speed

Multiplication: a × b.

■ Naïve:  add a to itself b times.  N 2N steps

■ Grade school.   N2 steps

■ Divide-and-conquer (1962).  N1.58 steps

■ Ingenuity (1971).
N log N log log N steps

Greatest common divisor:  gcd(a, b).

■ Naïve:  factor a and b, then find gcd(a, b).   2N steps

■ Euclid (20 BCE):  gcd(a, b) = gcd(b, a mod b).    N steps

Complex multiplication:  (a + bi)(c + di) = x + yi.

■ Naïve:  x = ac - bd, y = bc + ad.   4 multiplications

■ Gauss (1800):   3 multiplications
– x1 = (a + b)(c + d), x2 = ac, x3 = bd
– x = x2 - x3, y = x1 - x2 - x3

N = # bits in binary 
representation of a, b
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Better Machines vs. Better Algorithms

New machine.

■ Costs $$$ or more.

■ Makes "everything" finish sooner.

■ Incremental quantitative improvements (Moore’s Law).

■ May not help much with some problems. 

New algorithm.

■ Costs $ or less.

■ Dramatic qualitative improvements possible!  (million times faster)

■ May make the difference, allowing specific problem to be solved.

■ May not help much with some problems. 
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Impact of Better Algorithms

Example 1:  N-body-simulation.

■ Simulate the gravitational interactions among N bodies.
– Physicists want N = # atoms in universe.

■ Brute force method takes N2 steps.

■ Appel (1981). algorithm takes N log N time
and enables new research.

Example 2:  Discrete Fourier Transform (DFT).

■ Breaks down waveforms (sound) into periodic components.

– foundation of signal processing
– CD players, JPEG, analyzing astronomical data, etc.

■ Grade school method takes N2 steps.

■ Runge-König (1924), Cooley-Tukey (1965). FFT algorithm takes
N log N time and enables new technology.
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Case Study:  Sorting

Sorting problem:

■ Given an array of N integers, rearrange them so that they are in
increasing order.

■ Among most fundamental problems.
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Sorting problem:

■ Given an array of N integers, rearrange them so that they are in
increasing order.

Insertion sort

■ Brute-force sorting solution.

■ Move left-to-right through array.

■ Exchange next element with larger elements to its left, one-by-one.

Case Study:  Sorting
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Generic Item to Be Sorted

Define generic Item type to be sorted.

■ Associated operations:
– less, show, swap, rand

■ Example:  integers.

typedef int Item;

int  ITEMless(Item a, Item b);
void ITEMshow(Item a);
void ITEMswap(Item *pa, Item *pb);
int  ITEMscan(Item *pa);

ITEM.h

swap 2 Items

return 1 if a < b



9

Item Implementation

#include <stdio.h>
#include "ITEM.h"

int ITEMless(Item a, Item b) {
return (a < b);

}

void ITEMswap(Item *pa, Item *pb) {
Item t;
t = *pa; *pa = *pb; *pb = t;

}

void ITEMshow(Item a) {
printf("%d\n", a);

}

void ITEMscan(Item *pa) {
return scanf("%d", pa);

}

item.c

swap integers – need 
to use pointers
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Generic Sorting Program

#include <stdio.h>
#include <stdlib.h>
#include "Item.h"
#define N 2000000

int main(void) {
int i, n = 0;
Item a[N];

while(ITEMscan(&a[n]) != EOF)
n++;

sort(a, 0, n-1); 

for (i = 0; i < n; i++)
ITEMshow(a[i]); 

return 0;
}

sort.c (see Sedgewick 6.1)

Read input.

Call generic sort 
function.

Print results.

Max number of 
items to sort.
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Insertion Sort Function

void insertionsort(Item a[], int left, int right) {
int i, j;

for (i = left + 1; i <= right; i++)
for (j = i; j > left; j--)

if (ITEMless(a[j], a[j-1]))
ITEMswap(&a[j], &a[j-1]);

else
break;

}

insertionsort.c (see Sedgewick Program 6.1)
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Profiling Insertion Sort Empirically

Use lcc “profiling” capability.

■ Automatically generates a file “prof.out” that has frequency counts 
for each instruction.

■ Striking feature:
– HUGE numbers! % lcc -b insertion.c

% a.out < sort1000.txt
% bprint

Unix

void insertionsort(Item a[], int left, int right) <1>{
int i, j;
for (<1>i = left + 1; <1000>i <= right; <999>i++)

for (<999>j = i; <256320>j > left; <255321>j--)
if (<256313>ITEMless(a[j], a[j-1]))

<255321>ITEMswap(&a[j], &a[j-1]);
else

<992>break;
<1>}

prof.out
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Profiling Insertion Sort Analytically

How long does insertion sort take?

■ Depends on number of elements N to sort.

■ Depends on specific input.

■ Depends on how long compare and exchange operation takes.

Worst case.

■ Elements in reverse sorted order.
– ith iteration requires i - 1 compare and exchange operations
– total = 0 + 1 + 2 + . . . + N-1  =  N (N-1) / 2

E F G H I J D C B A

unsorted active sorted
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Profiling Insertion Sort Analytically

How long does insertion sort take?

■ Depends on number of elements N to sort.

■ Depends on specific input.

■ Depends on how long compare and exchange operation takes.

Best case.

■ Elements in sorted order already.
– ith iteration requires only 1 compare operation
– total = 0 + 1 + 1 + . . . + 1  =  N -1

A B C D E F G H I J

unsorted active sorted
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Profiling Insertion Sort Analytically

How long does insertion sort take?

■ Depends on number of elements N to sort.

■ Depends on specific input.

■ Depends on how long compare and exchange operation takes.

Average case.

■ Elements are randomly ordered.
– ith iteration requires  i / 2 comparison on average
– total = 0 + 1/2 + 2/2 + . . . + (N-1)/2  = N (N-1) / 4
– check with profile:  249750 vs. 256313

B E F R T U O R C E

unsorted active sorted

16

Profiling Insertion Sort Analytically

How long does insertion sort take?

■ Depends on number of elements N to sort.

■ Depends on specific input.

■ Depends on how long compare and exchange operation takes.

Worst case:   N (N - 1) / 2.

Best case:  N - 1.

Average case:  N (N – 1) / 4.
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Estimating the Running Time

Total run time: 

■ Sum over all instructions:  frequency * cost.

Frequency:

■ Determined by algorithm and input.

■ Can use lcc -b (or analysis) to help estimate.

Cost:

■ Determined by compiler and machine.

■ Could estimate by lcc -S (plus manuals).
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Easier alternative.

(i)   Analyze asymptotic growth.

(ii)  For small N, run and measure time.

For large N, use (i) and (ii) to predict time.

Asymptotic growth rates.

■ Estimate time as a function of input size.
– N,  N log N,  N2,  N3,  2N,  N!

■ Big-Oh notation hides constant factors and lower order terms.
– 6N3  + 17N2 + 56  is O(N3)

Insertion sort is O(N2).  Takes 0.1 sec for N = 1,000.

■ How long for N = 10,000?  10 sec  (100 times as long)

■ N = 1 million?  1.1 days (another factor of 104)

■ N = 1 billion?  31 centuries (another factor of 106)

Estimating the Running Time

Donald Knuth
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Sorting Case Study:  mergesort

Insertion sort  (brute-force)
Mergesort  (divide-and-conquer)

■ Divide array into two halves.

M E R G E S O R T M E

O R T M EM E R G E S divide
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M E R G E S O R T M E

O R T M EM E R G E S divide

E M O R TE E G M R S sort

Sorting Case Study:  mergesort

Insertion sort  (brute-force)
Mergesort  (divide-and-conquer)

■ Divide array into two halves.

■ Sort each half separately.  How do we sort half size files?
! Any sorting algorithm will do.
! Use mergesort recursively!
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Sorting Case Study:  mergesort

Insertion sort  (brute-force)
Mergesort  (divide-and-conquer)

■ Divide array into two halves.

■ Sort each half separately.

■ Merge two halves to make sorted whole.
! How do we merge efficiently?

M E R G E S O R T M E

O R T M EM E R G E S divide

E M O R TE E G M R S sort

E E E G M M O R R S T merge
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Profiling Mergesort Analytically

How long does mergesort take?

■ Bottleneck = merging (and copying).
– merging two files of size N/2 requires N comparisons

■ T(N) = comparisons to mergesort
array of N elements.

{
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NNT
N

N
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Unwind recurrence:  (assume N = 2k ).

T(N)  =  2 T(N/2) + N    =  2 (2 T(N/4) + N/2) + N
=  4 T(N/4) + 2N  =  4 (2 T(N/8) + N/4) + 2N
=  8 T(N/8) + 3N
=  16 T(N/16) + 4N
. . .

=  N T(1) + k N
=  0 + N log2 N
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Profiling Mergesort Analytically

How long does mergesort take?

■ Bottleneck = merging (and copying).
– merging two files of size N/2 requires N comparisons

■ N log2 N comparisons to sort ANY array of N elements.
– even already sorted array!

How much space?
! Can’t do "in-place" like insertion sort.
! Need extra array of size N.
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Implementing Mergesort

Item aux[MAXN];

void mergesort(Item a[], int left, int right) {
int mid = (right + left) / 2;
if (right <= left)

return;
mergesort(a, left, mid);
mergesort(a, mid + 1, right);
merge(a, left, mid, right);

}

mergesort (see Sedgewick Program 8.3)

uses scratch array
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Implementing Mergesort

void merge(Item a[], int left, int mid, int right) {
int i, j, k;

for (i = mid+1; i > left; i--)
aux[i-1] = a[i-1];

for (j = mid; j < right; j++)
aux[right+mid-j] = a[j+1];

for (k = left; k <= right; k++)
if (ITEMless(aux[i], aux[j]))

a[k] = aux[i++];
else 

a[k] = aux[j--];
}

merge (see Sedgewick Program 8.2)

copy to 
temporary array

merge two sorted 
sequences
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Sorting Case Study:  quicksort

Insertion sort  (brute-force)
Mergesort  (divide-and-conquer)
Quicksort  (conquer-and-divide)

■ Partition array so that:
– some partitioning element a[m] is in its final position
– no larger element to the left of m
– no smaller element to the right of m

Q U I C K S O R T I S C O O L

partitioning 
element

I C K I C L Q U S O R T S O O

partitioned array

≤ L ≥ L
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Sorting Case Study:  quicksort

Insertion sort  (brute-force)
Mergesort  (divide-and-conquer)
Quicksort  (conquer-and-divide)

■ Partition array so that:
– some partitioning element a[m] is in its final position
– no larger element to the left of m
– no smaller element to the right of m

■ Sort each "half" recursively.

Q U I C K S O R T I S C O O L

partitioning 
element

I C K I C L Q U S O R T S O O

I C K I C Q U S O R T S O O

Sort each half.
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Sorting Case Study:  quicksort

Insertion sort  (brute-force)
Mergesort  (divide-and-conquer)
Quicksort  (conquer-and-divide)

■ Partition array so that:
– some partitioning element a[m] is in its final position
– no larger element to the left of m
– no smaller element to the right of m

■ Sort each "half" recursively.

Q U I C K S O R T I S C O O L

partitioning 
element

I C K I C L Q U S O R T S O O

C C I I K O O O Q R S S T U
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Sorting Case Study:  quicksort

Insertion sort  (brute-force)
Mergesort  (divide-and-conquer)
Quicksort  (conquer-and-divide)

■ Partition array so that:
– some partitioning element a[m] is in its final position
– no larger element to the left of m
– no smaller element to the right of m

■ Sort each "half" recursively.

void quicksort(Item a[], int left, int right) {
int m; 
if (right > left) {

m = partition(a, left, right);
quicksort(a, left, m - 1);
quicksort(a, m + 1, right);

}
}

quicksort.c (see Sedgewick Program 7.1)
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Sorting Case Study:  quicksort

Insertion sort  (brute-force)
Mergesort  (divide-and-conquer)
Quicksort  (conquer-and-divide)

■ Partition array so that:
– some partitioning element a[m] is in its final position
– no larger element to the left of m
– no smaller element to the right of m

■ Sort each "half" recursively.

■ How do we partition efficiently?
– N - 1 comparisons
– easy with auxiliary array
– better solution:  use no extra space!
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int partition(Item a[], int left, int right) {
int i = left-1;    /* left to right pointer */
int j = right;     /* right to left pointer */
Item p = a[right]; /* partition element     */

for(;;) {
while (ITEMless(a[++i], p))

;
while (ITEMless(p, a[--j]))

if (j == left)
break;

if (i >= j)
break;

ITEMswap(&a[i], &a[j]);
}

ITEMswap(&a[i], &a[right]);
return i;

}

partition (see Sedgewick Program 7.2)

Implementing Partition

find element on left to swap

look for element on right to 
swap, but don’t run off end

pointers cross

swap partition 
element
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Profiling Quicksort Empirically

void quicksort(Item a[], int left, int right) <1337>{
int p;
if (<1337>right <= left)

return<669>;
<668>p = partition(a, left, right);
<668>quicksort(a, left, p-1);
<668>quicksort(a, p+1, right);

<1337>}

prof.out

Striking feature:  no 
HUGE numbers!
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int partition(Item a[], int left, int right) <668>{
int i = <668>left-1, j = <668>right;
Item swap, p = <668>a[right];

for(<668>;<1678>;<1678>) {
while (<5708>ITEMless(a[++i], p))

<3362>;
while (<6664>ITEMless(p, a[--j]))

if (<4495>j == left)
<177>break; 

if (<2346>i >= j)
<668>break;

<1678>ITEMswap(&a[i], &a[j]);
}
<668>ITEMswap(&a[i], &a[right]);
return <668>i;

<668>}

prof.out (cont)

Profiling Quicksort Empirically

Striking feature:  no 
HUGE numbers!
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Profiling Quicksort Analytically

Intuition.

■ Assume all elements unique. 

■ Assume we always select median as partition element.

■ T(N) = # comparisons.

! Analysis "almost true" if you partition
on random element.

Can you find median in O(N) time?
! Yes, see COS 226/423.
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If N is a power of 2.
⇒ T(N) =   N log2 N

Bob Tarjan, et al (1973)
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Profiling Quicksort Analytically

Partition on median element.
! O(N log2 N) best and worst case.

Partition on rightmost element.
! O(N2) worst case.
! Already sorted file:  takes N2/2 + N/2 comparisons.

Partition on random element.
! Roughly 2 N log e N steps.
! Choose random partition element.

Check profile.

■ 2 N log e N:  13815 vs. 12372 (5708 + 6664).

■ Running time for N = 100,000 about 1.2 seconds.

■ How long for N = 1 million ?
– slightly more than 10 times (about 12 seconds)
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Sorting Analysis Summary

Running time estimates:

■ Home pc executes 108 comparisons/second.

■ Supercomputer executes 1012 comparisons/second.

■ Implementations and analysis validate each other.

■ Further refinements possible.
– design-analysis-implement cycle

Good algorithms are more powerful than supercomputers.

                Insertion Sort (N2) 
computer thousand million billion 

home pc instant 2 hour 310 years 

super instant 1 sec 1.6 weeks 
 

Quicksort  (N lg N)
thousand million billion

instant 0.3 sec 6 min

instant instant instant
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Design and Analysis of Algorithms

Algorithm.

■ "Step-by-step recipe" used to solve a problem.

■ Generally independent of programming language or machine on 
which it is to be executed.

Design.

■ Find a method to solve the problem.

Analysis.

■ Evaluate its effectiveness
and predict theoretical performance.

Implementation.

■ Write actual code and test your theory.

A
na

ly
si

s

Implement

D
esign
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          Comparison of Different Sorting Algorithms 
Attribute insertion quicksort mergesort 

Worst case complexity N2 N2 N log2 N 

Best case complexity N N log2 N N log2 N 

Average case complexity N2 N log2 N N log2 N 

Already sorted N N2 N log2 N 

Reverse sorted N2 N2 N log2 N 

Space N N 2 N 

Stable yes no yes 
 

Sorting Analysis Summary

Sorting algorithms have different performance characteristics.

■ Other choices:  bubblesort, heapsort, shellsort, selection sort,
shaker sort, radix sort, BST sort, solitaire sort, hybrid methods.

■ Which one should I use?
! Depends on application.
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Computational Complexity

Framework to study efficiency of algorithms.

■ Depends on machine model, average case, worst case.

■ UPPER BOUND  = algorithm to solve the problem.

■ LOWER BOUND = proof that no algorithm can do better.

■ OPTIMAL ALGORITHM:   lower bound = upper bound.

Example:  sorting.
■ Measure costs in terms of comparisons.

■ Upper bound = N log2 N (mergesort).
– quicksort usually faster, but mergesort never slow

■ Lower bound = N log2 N - N log2 e
(applies to any comparison-based algorithm).

– Why?
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Computational Complexity

Caveats.

■ Worst or average case may be unrealistic.

■ Costs ignored in analysis may dominate.

■ Machine model may be restrictive.

Complexity studies provide:

■ Starting point for practical implementations.

■ Indication of approaches to be avoided.
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Summary

How can I evaluate the performance of a proposed algorithm?

■ Computational experiments.

■ Complexity theory.

What if it’s not fast enough?

■ Use a faster computer.
– performance improves incrementally

■ Understand why.

■ Develop a better algorithm (if possible).
– performance can improve dramatically

Lecture T5:  Extra Slides
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Average Case vs. Worst Case

Worst-case analysis.

■ Take running time of worst input of size N.

■ Advantages:
– performance guarantee

■ Disadvantage:
– pathological inputs can determine run time

Average case analysis.

■ Take average run time over all inputs of some class.

■ Advantage:
– can be more accurate measure of performance

■ Disadvantage:
– hard to quantify what input distributions will look like in practice
– difficult to analyze for complicated algorithms, distributions
– no performance guarantee
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Profiling Quicksort Analytically

Average case.

■ Assume partition element chosen at random and all elements are 
unique.

■ Denote ith largest element by i.

■ Probability that i and j (where j > i) are compared = 1
2
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Comparison Based Sorting Lower Bound

a1 < a2

a1 < a3

a2 < a3 a1 < a3

a2 < a32, 1, 3

2, 3, 1 3, 2, 11, 3, 2 3, 1, 2

1, 2, 3

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

Decision Tree of Program
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Comparison Based Sorting Lower Bound

Lower bound = N log2N (applies to any comparison-based algorithm).

■ Worst case dictated by tree height h.

■ N! different orderings.

■ One (or more) leaves corresponding to each ordering.

■ Binary tree with N! leaves must have

)log(
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Stirling’s formula


