Lecture T2: Turing Machines

Adding Power to FSA

FSA advantages:

- Extremely simple and cheap to build.
- Well suited to certain important tasks.
- pattern matching, filtering, dishwashers, remote controls, traffic lights, sequential circuits

FSA disadvantages:
. Not sufficiently "powerful" to solve numerous problems of interest.
How can we make FSA's more powerful?

- NFSA = FSA + "nondeterminism", i.e, ability to guess the right answer (!)

Overview

Attempt to understand essential nature of computation by studying properties of simple machine models.

Goal: simplest machine that is "as powerful" as conventional computers.

Surprising Fact 1.

Surprising Fact 2.
2

Nondeterministic Finite State Automata

Nondeterministic FSA (NFSA).

- Simple machine with N states.
. Start in state 0.
- Read a bit.
- Depending on current state and input bit
- move to any of several new states
- Stop when last bit read.
- Accept if ANY choice of new states ends in state X, reject otherwise.

If in state 2 , and next bit is 1 : can move to state 1 can move to state 2 can move to state 3

Nondeterministic Finite State Automata

Nondeterministic FSA (NFSA).

- Simple machine with N states.
. Start in state 0.
- Read a bit.
- Depending on current state and input bit
- move to any of several new states

- Stop when last bit read.
- Accept if ANY choice of new states ends in state X, reject otherwise. Which strings are accepted? $\checkmark 0010001$
- 00
- 10000111001100
$\checkmark 10000111001101$

NFSA Example 2

Build an NFSA to match all strings whose $5^{\text {th }}$ to last character is ' x '.
. \% egrep 'x.... \$' /usr/dict/words asphyxiate
carboxylic
contextual
inflexible

FSA - NFSA Equivalence

Theorem: FSA and NFSA are "equally powerful".

- Given any NFSA, can construct FSA that accepts same inputs.
. For FSA, only one possible path to follow.
- For NFSA, need to consider many paths.

Systematic method for NFSA.

- Keep track of ALL possible states that the NFSA could be in for a given input.
- Accept if one of possible ending states is accept state.

Power of nondeterminism is very useful, but is it essential?

Notation: $\mathrm{X} \subseteq \mathrm{Y}$.

- Y is at least as powerful as X.
- Machine class Y all the languages that X can (and maybe more).

Proof (Part 1): FSA \subseteq NFSA.

- A FSA is a special type of NFSA.

FSA - NFSA Equivalence

Theorem: FSA and NFSA are "equally powerful".
. Given any NFSA, can construct FSA that accepts same inputs.

Notation: $\mathbf{X} \subseteq \mathbf{Y}$.

- Y is at least as powerful as X.
- Machine class Y all the languages that X can (and maybe more).

Proof (part 2): NFSA \subseteq FSA.

- Given a nondeterministic FSA, we give method to construct a deterministic FSA that recognizes the same language.
. One state in FSA for every set of states in the NFSA.
. N -state NFSA $\Rightarrow \mathbf{2}^{\mathrm{N}}$ state FSA.

Pushdown Automata

How can we make FSA's more powerful?
. Nondeterminism didn't help.
. Instead, add "memory" to the FSA.
. A pushdown stack
(amount of memory is arbitrarily large

Pushdown Automata (PDA).

- Simple machine with N states.
. Start in state 0.
- Read a bit, check bit at top of stack.
- Depending on current state/input bit/stack bit:
- move to new state
- push the input onto stack, or pop topmost element from stack
- Stop when last bit is read.
- ACCEPT if stack is empty, REJECT otherwise.

Pushdown Automata

PDA for deciding whether input is of form $0^{N_{1}}{ }^{\mathrm{N}}$.

- N O's followed by N 1 's for some N .
. ε, 01, 0011, 000111, 00001111, ...
- Use notation $x / y / z$
- If input is x and top of stack is y , then do z .

Pushdown Automata

How can we make FSA more powerful?

- PDA = FSA + stack.

Did it help?

- More powerful, can recognize:
- all bit strings with an equal number of 0's and 1's
- all bit strings of the form $0^{N_{1}} \mathrm{~N}$
- all "balanced" strings in alphabet: (, \{, [,], \},)
- Can't recognize language of all palindromes.
- 11 * 181 = 1991 = 181 * 11
-amanaplanacanalanama

- More powerful machines still needed.

Turing Machine

Turing Machine.

- Simple machine with N states.
. Start in state 0.
- Input on an arbitrarily large TAPE that can be read from *and* written to.
. Read a bit from tape.

- Depending on current state and input bit
- write a bit to tape
- move tape right or left
- move to new state
- Stop if enter yes or no state.
- Accept if yes, reject if no or does not terminate.
new accept / reject mechanism

C Program to Simulate Turing Machine

Three character alphabet (0 is 'blank').
Input: description of machine (9 integers per state s).

- next [i] [s] = t means if currently in state sand input character read in is i, then transition to state t.
- out [i] [s] = w means if currently in state s and input character read in is i, then write w to current tape position.
- move[i][s] = ± 1 means if currently in state s and input character read in is i, then move tape cursor one position to left or right.
- tape [i] is $\mathrm{i}^{\text {th }}$ character on tape initially.

Details missing:

- Might run off end of tape.

Some Examples

Build Turing machines that accepts inputs that:
. have an equal number of 0's and 1's.
\#1100\#, \#0011\#, \#011101110000\#

- are even length palindromes of 0 's and 1 's. \#0110\#, \#110011\#, \#10111000011101\#
- have a power of two 1's.
\#1\#, \#11\#, \#1111\#, \#11111111\#

C Program to Simulate Turing Machine

	turing.c
\#define MAX_TAPE_SIZE	2000
\#define States	100
\#define ACCEPT_STATE	99
int next[3][STATES], out[3][STATES], move[3][STATES]; char tape[MAX_TAPE_SIZE];	
int in, d, state $=0$, cursor $=$ MAX_TAPE_SIZE / 2;	
while (state != ACCEPT_STATE)	
```in = tape[cursor]; simulate Turing machine state \(=\) next [in][state]; simulate Turing machine tape [head] \(=\) out [in][state];```	
\}	

## Nondeterministic Turing Machine

TM with extra ability:

- Choose one of several possible transition states given current tape contents and state.

Exercise:

- Nondeterministic TM to recognize language of all bit strings of the form ww for some w.
- 110110
- 100011110001111
- 001100011100001111001100011100001111


## Abstract Machine Hierarchy

Each machine is strictly more powerful than the previous.

- Power = can recognize more languages.

Are there limits to machine power?
Corresponding hierarchy exists for languages.

- Essential connection between machines and languages. (See Lecture T3.)

Machine	Nondeterminism   adds power?
Finite state automata	No
Pushdown automata	Yes
Linear bounded automata	Unknown
Turing machine	No

## Summary

Abstract machines are foundation of all modern computers.

- Simple computational models are easier to understand.
- Leads to deeper understanding of computation.

Goal: simplest machine that is "as powerful" as conventional computers.

Abstract machines.
FSA: simplest machine that is still interesting. pattern matching, sequential circuits (Lecture T1)
PDA: add read/write memory in the form of a stack. compiler design (Lecture T3)
TM: add memory in the form of an arbitrarily large array. general purpose computers (Lecture T4)

## Lecture T2: Extra Slides



## FSA, NFSA, and RE Are Equivalent

Theorem: FSA, NFSA, and RE are "equally powerful".
. NFSA $\subseteq$ FSA

Proof sketch (part 2): $\mathrm{FSA} \subseteq \mathrm{RE}$

- Goal: given an FSA, find a RE that matches all strings accepted by the FSA and no other strings.
. Main idea: consider
- paths from start state(s) to accept state(s): 00 | 01
-directed cycles: (1*)(00 | 01)(11 | 10)*



## FSA, NFSA, and RE Are Equivalent

Theorem: FSA, NFSA, and RE are "equally powerful"
. $N F S A \subseteq F S A \subseteq R E$

Proof sketch (part 3): RE $\subseteq$ NFSA

- Goal: given a RE, construct a NFSA that accepts all strings matched by the RE, and rejects all others.
- Use the following rules to construct NFSA:

a


AB


FSA, NFSA, and RE Are Equivalent

Example.
. RE: 01(00 | 101)*


01


00 | 101

## FSA, NFSA, and RE Are Equivalent

Example.
. RE: 01(00 | 101)*
$\varepsilon$ - transition: jump states without reading a character to next state

(00 | 101)*

## FSA, NFSA, and RE Are Equivalent

Example.
. RE: 01(00 | 101)*


$$
01(00+101)^{*}
$$

## Nondeterminism Does Help PDA's

Nondeterministic pushdown automata (NPDA).
. Same as PDA, except depending on current state/input bit/stack bit

- move to ANY OF SEVERAL new states
- push the input onto stack, or pop top-most element from stack

NPDA to recognize all (even length) palindromes.

- Bit string is the same forwards and backwards.

Nondeterministic PDA more powerful than deterministic PDA.

- PDA $\subseteq$ NPDA trivially.
. PDA cannot recognize language of all (even length) palindromes, but NPDA can.
- Therefore PDA $\subset$ NPDA .


## Pushdown Automata

How can we make FSA more powerful?
. NPDA = FSA + stack + nondeterminism.

Did it help?

- Can recognize language of all palindromes.
. Can’t recognize some languages:
- equal number of 0's 1 's and 2's
$-0^{\mathrm{N}} 1^{\mathrm{N}} 2^{\mathrm{N}}$
- bit strings with a power of two 1's
. Need still more powerful machines.


## Linear Bounded Automata

Turing machine.

- No limit on length of tape.

Linear bounded automata (LBA).
. Same as TM except length of tape = K * (size of input).

LBA is strictly less powerful than TM.

- There are languages that can be recognized by TM but not a LBA.
- We won't dwell on LBA in this course.

