Unit T: Theory of CS

A Puzzle ("Post’s Correspondence Problem")

Given a set of cards:
. N card types (can use as many of each type as possible).
. Each card has a top string and bottom string.

Example 1: BAB A AB BA
A ABA B B

0 1 2 3

Puzzle:
. Is it possible to arrange cards so that top and bottom strings are
the same?
Solution 1. A | BA|BAB| AB | A
& ABA| B A B | ABA

A Puzzle ("Post’s Correspondence Problem")

Given a set of cards:
. N card types (can use as many of each type as possible).
. Each card has a top string and bottom string.

Example 2: A ABA B
BAB B A B

0 1 2 3

Puzzle:

. Is it possible to arrange cards so that top and bottom strings are
the same?

Solution 2.
re

PCP Puzzle Contest

S X 11A [A BL||B |[[1AE
S[11111X] [| 1 Al [B B A E
0 1 2 3 4 5 6 7 8 9 10

Contest:
. Additional restriction: string must start with ’'S’.

. Bethe first to solve this puzzle!
(no credit, just fame and acclamation)
. Check solution by putting STRING ONLY (blanks and line breaks
OK) in afile sol uti on. t xt, then type
/u/ cs126/ bin/ pcp < solution.txt

Extra credit for the bored:

. Write a program that reads a set of Post cards, and determines
whether or not there is a solution.

Lecture T1: Pattern Matching

Y . O
\zj;@?@

Introduction to Theoretical CS

Two fundamental questions.
. What can a computer do?

. What can a computer do with limited resources?

General approach.

. Don’t talk about specific machines or problems.
. Consider minimal abstract machines.

. Consider general classes of problems.

Why Learn Theory

In theory . ..

. Deeper understanding of what is a computer and computing.
. Foundation of all modern computers.

. Pure science.

. Philosophical implications.

In practice . ..

. Web search: theory of pattern matching.

. Sequential circuit: theory of finite state automata.
. Compilers: theory of context free grammar.

. Cryptography: theory of complexity.

. Data compression: theory of information.

Finite State Automata

Simple machine with N states.
. Startin state 0.

. Read an input bit.

. Move to new state

- depends on input bit
and current state

. Stop when last bit read.
-’yes’ if end in accept state(s)
-'no’ otherwise

'Yes’ also called accepted or

recognized inputs from alanguage.

e

e

start state

O

C Code for FSA

#i ncl ude <stdi o. h>
int main(void) {
int c, state = 0;
while ((c = getchar()) !'= EOF) {

if (state == 0 & ¢ == '0’) state = 2;
if (state == 0 & ¢ == "1") state = 1,
if (state == 1 & ¢ == '0’) state = 3;
if (state == 1 & ¢ == "'1") state = 2;
if (state == 2 & ¢ == '0’) state = 2;
if (state == 2 & ¢ == "1") state = 2;
if (state == 3 & ¢ == '0’) state = 2;
if (state == 3 & ¢ == "1') state = 1;

}

if (state == 3)
printf("Yes.\n");

straightforward to convert
FSA's into C program or to

el se build with hardware
printf("No.\n");
return O;

Better C Code for FSA

#i ncl ude <stdi o. h>
#def i ne STATES

#defi ne ALPHABET_SI ZE
#def i ne START_STATE

use 2D array, and don’t
hardwire constants

WOoOND~

#def i ne ACCEPT_STATE

int main(void) {
int c, state = START_STATE
int transition[STATES] [ALPHABET_SI ZE] =

{ {2, 1}, {3 2}, {2, 2}, {2, 1} };

while ((c = getchar()) != EOF)
if (c >>"0 & c <’'0 + ALPHABET_SI ZE)
state = transition[state][c - '0'];

if (state == ACCEPT_STATE) printf("Yes.\n");
else printf("No.\n");
return O;

A Second Example

Consider the following two state FSA.

S, O
\%:‘:

0

What bit strings does it accept?
. Yes: 0, 11110, 00000, 100100111011,
all bit strings with an odd number of 0’s.
. No: 1, 1111, 00, 1011100111011,
all bit strings with an even number of 0’s.

A Third Example

Build an FSA that accepts all strings that contain 'acat’ as a substring.
. tgacatg
. acacatg

Start building:

State name represents prefix of "acat"
that is currently matches.

A Third Example

Build an FSA that accepts all strings that contain 'acat’ as a substring.
. tgacatg
. acacatg

Finish building: E

An Application: Bounce Filter

Bounce filter: remove isolated b’s and g’s in input.
. Input: bbgbbbggbggggbbbb
. Output (one-bitdelay): b b b bbbgggggggbbbb

no accept state — instead
output color of each state
you visit

An Application: Bounce Filter

Bounce filter: remove isolated b’s and g’s in input.
. Input: bbgbbbggbggggbbbb
. Output (one-bitdelay): b bbb bbgggggggbbbb

State interpretations.
. 0: start
. BB: atleast two consecutive b’s.
. G: sequence of b’s followed by g.
. GG: atleast two consecutive g's.
. B: sequence of g's followed by b.

egrep

General regular expressions pattern matching.
. Acts as filter.
. Sends lines from stdin to stdout that "match" argument string.

Elementary Examples
%egrep 'beth’ classlist

03/ Syt he/ El i zabet h/ 6/ esnyt he Find all lines in file
03/ Bet hke/ Kri st en/ 3/ kbet hke classlist with

) substring 'beth’
% egrep '/3/" classlist ‘

03/ Mari n/ Ant hony/ 3/ amari n
03/ Arel | ano/ Bel en/ 3/ arel | ano] List all people in

03/ Wi ss/ Jacob/ 3/ wei ss precept 3.

%egrep ' zeugl odon’ nobydi ck. t xt
rechristened the nonster zeuglodon and in his

%egrep 'acat’ human. data
gcaacgcacacaacatgcatttt

Crossword Puzzle or Scrabble Too Hard?

[usr/dict/words is alist of (25,143) words in dictionary.

More Examples

dot matches any

ngle character

% egrep ' hh’ /usr/dict/words
beachhead
hi ghhanded <::<Two consecutive h's.
wi t hhel d
wi t hhol d
) , . A
% egrep 'u.u.u /usr/dict/words <:::si
curul us
% egrep '..00..00" /usr/dict/words
bl oodr oot
school book <:::but not “cookbook"
school room i

Egrep Pattern Conventions

Conventions for egr ep:

c any non-special character matches itself
any single character

r* zero or more occurrence of r

(r) grouping

rijr2 logical OR

[aei ou] any vowel

[~ aeiou] anynon-vowel

N beginning of line

$ end of line

Flags for egr ep:
egrep -v

match all lines except those specified by pattern

Still More Examples

% egrep 'n(ie|ei)ther’ /usr/dict/words
nei t her

% egrep 'actg(atac)*gcta’ hunan. data
ggt act ggct aggac

% egrep 'actg(atac)*gcta’ student.data
tat act gat acat acat acgct attac

%egrep '"y.(..)*y$ /usr/dict/words <::
yest er day

% egrep -v '[aeiou]’ /usr/dict/words |

JDo spell checking

by specifying what
you know.

JStarts and ends
with y, odd number
of characters.

JFind all words with

egrep '...... '
gr hgt hm no vowels and 6 or
syzygy more letters.

Fundamental Questions: Theoretical Minimum

Which aspects are essential?
. Unix egr ep regular expressions are useful.
. But more complex than theoretical minimum.
. egrep theoretical minimum:

c any non-special character matches itself
r* zero or more occurrence of r

(r) grouping

rijr2 logical OR

any single character

[aei ou] any vowel
A beginning of line
$ end of line

Fundamental Questions: What Kinds of Patterns

What kinds of patterns can be specified?
(all but one of following)

All bit strings that: Example
. Begin with 0 and end with 1. 00010110111
. Have more 1's than 0's. 01111001100
. Have no consecutive 1's. 01001010010
. Has and odd number of O’s. 01001010010
. Has 011010 as a substring. 00011010000

Fundamental Questions: What Kinds of Patterns

What kinds of patterns can be specified?
(all but one of following)

All bit strings that: Reqular Expression
. Begin with 0 and end with 1. 0(0]1)*1
. Have more 1's than O’s. not possible
. Have no consecutive 1’s. (0| 10)*(1 | 0%)
. Has and odd number of 0’s. (1*01*01*)*(1*01*)
. Has 011010 as a substring. (0] 1) *011010(0] 1) *

Formal Languages

An alphabet is a finite set of symbols.

. Binary alphabet ={0, 1}
. Lower-case alphabet ={a, b, ¢, d, ..., vy, z}
. Genetic alphabet ={a, c, t, g}

A string is afinite sequence of symbols in the alphabet.
. 70111011011 is astring in the binary alphabet.
. '"tigers’ isastringinthe lower-case alphabet.
. "acctgaacta’ isastring in the genetic alphabet.

A formal language is an (unordered) set of strings in an alphabet.
. Can have infinitely many strings.

. Examples:
{0, 010, O110, 01110, 011110, O111110, ...}
{11, 1111, 112111, 11111111, 1111111111, ...}

Formal Languages

Can cast any computation as a language recognition problem.
. Is x =23,536,481,273 a prime number?
&
e

FSA.
. Machine determines whether a string is in language.

Regular expression.
. Shorthand method for specifying a language.

1
Q 0 CS (1*01*01*) *(1*01*)
—

0 even #0of 0's exactly one 0

Duality Between FSA's and RE's

Observation: for each FSA we create, we can find a regular
expression that matches the same strings that the FSA accepts.

Is this always the case?
rd

What about the OTHER way around?
e

Stay tuned: see Lecture T2.

Limitations of FSA

FSA are simple machines.
N states 0 can’'t remember more than N things.
. Some languages require remembering more than N things.

No FSA can recognize the language of all bit strings with an equal
number of 0’s and 1’s.

A warmup exercise:

v

If 01xyz accepted then so is 00001xyz

Limitations of FSA

No FSA can recognize the language of all bit strings with an equal
number of 0's and 1's.

. Suppose an N-state FSA can recognize this language.
. Consider following input: 0000000011111111
-

N+10's N+11's

FSA must accept this string.
. Some state x is revisited during first N+1 O’'s since only N states.
"R ; 0000000011111111 "
X X

Machine would accept same string without intervening 0's.
000011111111

. This string doesn’t have an equal number of 0’s and 1's. *

Looking Ahead

Today.
Defined a simple abstract machine = FSA.

. Capable of pattern matching.

Hmm. Which will we
run out of first?

Incapable of "counting."
Need to consider more powerful machines.

Future lectures. P
: i P
Define an abstract machine. <
Understand how it works and what it can do.
Find things it can't do.
Define a more powerful machine.
Repeat until we run out of problems or machines.

Lecture T1: Supplemental Notes

A Fourth Example

FSA to decide if integer (represented in binary) is divisible by 3?
0 1

()
\/—\’@/’\’@

Ois start and accept state 1

What bit strings does it accept?
- Yes: 11 (3,), 110 (6,,), 1001 (9,(), 1100 (12,,), 1111 (15,), 10011
(18,), integers divisible by 3.
. No: 1(1,0),10 (2,0), 100 (4,4), 101 (5,,), 111 (7,,), integers not
divisible by 3.

A Fourth Example

FSA to decide if input (convert binary to decimal) is divisible by 3?
0 1
N . Q)
=0
— —
1 0
How does it work?
. State 0: input so far is divisible by 3.
. State 1: input has remainder 1 upon division by 3.
. State 2: input has remainder 2 upon division by 3.
. Transition example.
- Input 1100 (12,,) ends in state 0.

- If next bit is 0 then stay in state 0: 11000 (24,,).

- Adding 0 to last bit is same as multiplying number by 2.
Remains divisible by 3.

