
Unit T: Theory of CS

3

A Puzzle ("Post’s Correspondence Problem")

Given a set of cards:

■ N card types (can use as many of each type as possible).

■ Each card has a top string and bottom string.

Example 1:

Puzzle:

■ Is it possible to arrange cards so that top and bottom strings are
the same?

Solution 1.
! Yes.

2

AB

B

3

BA

B

1

A

ABA

0

BAB

A

2

AB

B

3

BA

B

1

A

ABA

0

BAB

A

1

A

ABA

N = 4

5

A Puzzle ("Post’s Correspondence Problem")

Given a set of cards:

■ N card types (can use as many of each type as possible).

■ Each card has a top string and bottom string.

Example 2:

Puzzle:

■ Is it possible to arrange cards so that top and bottom strings are
the same?

Solution 2.
! No. First card in solution must contain same letter in

leftmost position.

2

B

A

3

A

B

1

ABA

B

0

A

BAB
N = 4

6

PCP Puzzle Contest

Contest:

■ Additional restriction: string must start with ’S’.

■ Be the first to solve this puzzle!
(no credit, just fame and acclamation)

■ Check solution by putting STRING ONLY (blanks and line breaks
OK) in a file solution.txt, then type

/u/cs126/bin/pcp < solution.txt

Extra credit for the bored:

■ Write a program that reads a set of Post cards, and determines
whether or not there is a solution.

2

X

A

3

11A

A1

1

X

1X

0

S[

S[11111X][

4

1

1

7

[

[

6

]

]

5

[A

[B

9

B]

A]

10

[1A]E

E

8

B1

1B

Lecture T1: Pattern Matching

0

1

1

0

0

0

2

1

1

8

Introduction to Theoretical CS

Two fundamental questions.

■ What can a computer do?

■ What can a computer do with limited resources?

General approach.

■ Don’t talk about specific machines or problems.

■ Consider minimal abstract machines.

■ Consider general classes of problems.

9

Why Learn Theory

In theory . . .

■ Deeper understanding of what is a computer and computing.

■ Foundation of all modern computers.

■ Pure science.

■ Philosophical implications.

In practice . . .

■ Web search: theory of pattern matching.

■ Sequential circuit: theory of finite state automata.

■ Compilers: theory of context free grammar.

■ Cryptography: theory of complexity.

■ Data compression: theory of information.

13

Finite State Automata

Simple machine with N states.

■ Start in state 0.

■ Read an input bit.

■ Move to new state
– depends on input bit

and current state

■ Stop when last bit read.
– ’yes’ if end in accept state(s)
– ’no’ otherwise

’Yes’ also called accepted or
recognized inputs from a language.

! Yes: 10, 1010, 101010,
10101010, . . .

! No: all others.

1

0

00 1 1

1

3

1

2

0

start state

accept state

0

14

C Code for FSA

#include <stdio.h>
int main(void) {

int c, state = 0;
while ((c = getchar()) != EOF) {

if (state == 0 && c == ’0’) state = 2;
if (state == 0 && c == ’1’) state = 1;
if (state == 1 && c == ’0’) state = 3;
if (state == 1 && c == ’1’) state = 2;
if (state == 2 && c == ’0’) state = 2;
if (state == 2 && c == ’1’) state = 2;
if (state == 3 && c == ’0’) state = 2;
if (state == 3 && c == ’1’) state = 1;

}

if (state == 3)
printf("Yes.\n");

else
printf("No.\n");

return 0;
}

fsa1.c

straightforward to convert
FSA’s into C program or to
build with hardware

15

Better C Code for FSA

#include <stdio.h>
#define STATES 4
#define ALPHABET_SIZE 2
#define START_STATE 0
#define ACCEPT_STATE 3

int main(void) {
int c, state = START_STATE
int transition[STATES][ALPHABET_SIZE] =

{ {2, 1}, {3, 2}, {2, 2}, {2, 1} };

while ((c = getchar()) != EOF)
if (c >= ’0’ && c < ’0’ + ALPHABET_SIZE)

state = transition[state][c - ’0’];

if (state == ACCEPT_STATE) printf("Yes.\n");
else printf("No.\n");
return 0;

}

fsa2.c

use 2D array, and don’t
hardwire constants

16

A Second Example

Consider the following two state FSA.

What bit strings does it accept?
■ Yes: 0, 11110, 00000, 100100111011,

all bit strings with an odd number of 0’s.

■ No: 1, 1111, 00, 1011100111011,
all bit strings with an even number of 0’s.

0

1

10

1

0

17

A Third Example

Build an FSA that accepts all strings that contain ’acat’ as a substring.

■ tgacatg

■ acacatg

Start building:

acgt

φ a ac aca acat
a c a t

cgt

State name represents prefix of "acat"
that is currently matches.

20

A Third Example

Build an FSA that accepts all strings that contain ’acat’ as a substring.

■ tgacatg

■ acacatg

Finish building:

φ a ac aca acat
a c a t

c acgt

g

a

cgt

gt

cgt
a

21

An Application: Bounce Filter

Bounce filter: remove isolated b’s and g’s in input.

■ Input: b b g b b b g g b g g g g b b b b

■ Output (one-bit delay): b b b b b b g g g g g g g b b b b

Gb
b

g

Bg

g

b

GG

BB

b

g

no accept state – instead
output color of each state
you visit

0

b

g

22

An Application: Bounce Filter

Bounce filter: remove isolated b’s and g’s in input.

■ Input: b b g b b b g g b g g g g b b b b

■ Output (one-bit delay): b b b b b b g g g g g g g b b b b

State interpretations.

■ 0: start

■ BB: at least two consecutive b’s.

■ G: sequence of b’s followed by g.

■ GG: at least two consecutive g’s.

■ B: sequence of g’s followed by b.

24

egrep

General regular expressions pattern matching.

■ Acts as filter.

■ Sends lines from stdin to stdout that "match" argument string.

%egrep ’beth’ classlist
03/Smythe/Elizabeth/6/esmythe
03/Bethke/Kristen/3/kbethke

% egrep ’/3/’ classlist
03/Marin/Anthony/3/amarin
03/Arellano/Belen/3/arellano
. . .
03/Weiss/Jacob/3/weiss

%egrep ’zeuglodon’ mobydick.txt
rechristened the monster zeuglodon and in his

%egrep ’acat’ human.data

gcaacgcacacaacatgcatttt

Elementary Examples

Find all lines in file
classlist with
substring ’beth’

List all people in
precept 3.

25

Crossword Puzzle or Scrabble Too Hard?

/usr/dict/words is a list of (25,143) words in dictionary.

% egrep ’hh’ /usr/dict/words
beachhead
highhanded
withheld
withhold

% egrep ’u.u.u’ /usr/dict/words
cumulus

% egrep ’..oo..oo’ /usr/dict/words
bloodroot
schoolbook
schoolroom

More Examples

A dot matches any
single character

but not "cookbook"

Two consecutive h’s.

26

Egrep Pattern Conventions

Conventions for egrep:

c any non-special character matches itself

. any single character

r* zero or more occurrence of r

(r) grouping

r1|r2 logical OR

[aeiou] any vowel

[^ aeiou] any non-vowel

^ beginning of line

$ end of line

Flags for egrep:

egrep -v match all lines except those specified by pattern

27

Still More Examples

% egrep ’n(ie|ei)ther’ /usr/dict/words
neither

% egrep ’actg(atac)*gcta’ human.data
ggtactggctaggac

% egrep ’actg(atac)*gcta’ student.data
tatactgatacatacatacgctattac

% egrep ’^y.(..)*y$’ /usr/dict/words
yesterday

% egrep -v ’[aeiou]’ /usr/dict/words |
egrep ’......’

rhythm
syzygy

Unix

Do spell checking
by specifying what
you know.

Find all words with
no vowels and 6 or
more letters.

Starts and ends
with y, odd number
of characters.

29

Fundamental Questions: Theoretical Minimum

Which aspects are essential?
■ Unix egrep regular expressions are useful.

■ But more complex than theoretical minimum.

■ egrep theoretical minimum:

c any non-special character matches itself

r* zero or more occurrence of r

(r) grouping

r1|r2 logical OR

. any single character

[aeiou] any vowel

[^ aeiou] any non-vowel

^ beginning of line

$ end of line

not needed

30

Fundamental Questions: What Kinds of Patterns

What kinds of patterns can be specified?
(all but one of following)

All bit strings that: Example
■ Begin with 0 and end with 1. 00010110111

■ Have more 1’s than 0’s. 01111001100

■ Have no consecutive 1’s. 01001010010

■ Has and odd number of 0’s. 01001010010

■ Has 011010 as a substring. 00011010000

31

Fundamental Questions: What Kinds of Patterns

What kinds of patterns can be specified?
(all but one of following)

All bit strings that: Regular Expression
■ Begin with 0 and end with 1. 0(0|1)*1

■ Have more 1’s than 0’s. not possible

■ Have no consecutive 1’s. (0 | 10)*(1 | 0*)

■ Has and odd number of 0’s. (1*01*01*)*(1*01*)

■ Has 011010 as a substring. (0|1)*011010(0|1)*

32

Formal Languages

An alphabet is a finite set of symbols.
■ Binary alphabet = {0, 1}

■ Lower-case alphabet = {a, b, c, d, ..., y, z}

■ Genetic alphabet = {a, c, t, g}

A string is a finite sequence of symbols in the alphabet.
■ ’0111011011’ is a string in the binary alphabet.

■ ’tigers’ is a string in the lower-case alphabet.

■ ’acctgaacta’ is a string in the genetic alphabet.

A formal language is an (unordered) set of strings in an alphabet.

■ Can have infinitely many strings.

■ Examples:
{0, 010, 0110, 01110, 011110, 0111110, ...}

{11, 1111, 111111, 11111111, 1111111111, ...}

33

Formal Languages

Can cast any computation as a language recognition problem.

■ Is x = 23,536,481,273 a prime number?
! L = {2, 3, 5, 7, 11, 13, 17, . . . }
! Is x in language L?

FSA.

■ Machine determines whether a string is in language.

Regular expression.

■ Shorthand method for specifying a language.

0

1

10

1

0 (1*01*01*)*(1*01*)

even # of 0’s exactly one 0

34

Duality Between FSA’s and RE’s

Observation: for each FSA we create, we can find a regular
expression that matches the same strings that the FSA accepts.

Is this always the case?
! Yes.

What about the OTHER way around?
! Yes.

I don’t see why?

Stay tuned: see Lecture T2.

35

Limitations of FSA

FSA are simple machines.
■ N states ⇒ can’t remember more than N things.
■ Some languages require remembering more than N things.

No FSA can recognize the language of all bit strings with an equal
number of 0’s and 1’s.

A warmup exercise:

0 1

0

If 01xyz accepted then so is 00001xyz

0

36

Limitations of FSA

No FSA can recognize the language of all bit strings with an equal
number of 0’s and 1’s.

■ Suppose an N-state FSA can recognize this language.
■ Consider following input: 0000000011111111

■ FSA must accept this string.
■ Some state x is revisited during first N+1 0’s since only N states.

0000000011111111
x x

■ Machine would accept same string without intervening 0’s.
000011111111

■ This string doesn’t have an equal number of 0’s and 1’s.

N+1 0’s N+1 1’s

37

Looking Ahead

Today.

■ Defined a simple abstract machine = FSA.

■ Capable of pattern matching.

■ Incapable of "counting."

■ Need to consider more powerful machines.

Future lectures.

■ Define an abstract machine.

■ Understand how it works and what it can do.

■ Find things it can’t do.

■ Define a more powerful machine.

■ Repeat until we run out of problems or machines.

Hmm. Which will we
run out of first?

Lecture T1: Supplemental Notes

39

FSA to decide if integer (represented in binary) is divisible by 3?

What bit strings does it accept?

■ Yes: 11 (310), 110 (610), 1001 (910), 1100 (1210), 1111 (1510), 10011
(1810), integers divisible by 3.

■ No: 1 (110), 10 (210), 100 (410), 101 (510), 111 (710), integers not
divisible by 3.

A Fourth Example

0 is start and accept state 0

1

1

0

0

0

2

1

1

40

A Fourth Example

FSA to decide if input (convert binary to decimal) is divisible by 3?

How does it work?

■ State 0: input so far is divisible by 3.

■ State 1: input has remainder 1 upon division by 3.

■ State 2: input has remainder 2 upon division by 3.

■ Transition example.
– Input 1100 (1210) ends in state 0.
– If next bit is 0 then stay in state 0: 11000 (2410).
– Adding 0 to last bit is same as multiplying number by 2.

Remains divisible by 3.

0

1

1

0

0

0

2

1

1

