Unit T: Theory of CS

A Puzzle ("Post's Correspondence Problem")

Given a set of cards:

- N card types (can use as many of each type as possible).
. Each card has a top string and bottom string.

Example 1:

Puzzle:

- Is it possible to arrange cards so that top and bottom strings are the same?

Solution 1.

A	BA	BAB	AB	A
ABA	B	A	B	ABA
1	3	0	2	1

PCP Puzzle Contest

S[x	x	11A	1	[A]	[B1	B]	[1A]E
S[11111x] [1x	A	A1	1	[B]	[18	A]	E
0	1	2	3	4	5	6	7	8	9	10

Contest:

- Additional restriction: string must start with 'S'.
- Be the first to solve this puzzle! (no credit, just fame and acclamation)
- Check solution by putting STRING ONLY (blanks and line breaks OK) in a file solution.tat, then type
/u/cs126/bin/pcp < solution.txt
Extra credit for the bored:
- Write a program that reads a set of Post cards, and determines whether or not there is a solution.

Lecture T1: Pattern Matching

Why Learn Theory

In theory...

- Deeper understanding of what is a computer and computing.
. Foundation of all modern computers.
- Pure science.
- Philosophical implications.

In practice...

- Web search: theory of pattern matching.
. Sequential circuit: theory of finite state automata.
- Compilers: theory of context free grammar.
- Cryptography: theory of complexity.
. Data compression: theory of information.

Introduction to Theoretical CS

Two fundamental questions.

- What can a computer do?
- What can a computer do with limited resources?

General approach.

- Don't talk about specific machines or problems.
- Consider minimal abstract machines.
- Consider general classes of problems.

Finite State Automata

Simple machine with N states.

- Start in state 0.
- Read an input bit.
- Move to new state
- depends on input bit and current state
- Stop when last bit read.
- 'yes' if end in accept state(s)
- 'no' otherwise
'Yes' also called accepted or recognized inputs from a language.

2

C Code for FSA

fsa1.c

```
#include <stdio.h>
int main(void) {
    int c, state = 0;
    while ((c = getchar()) != EOF) {
        if (state == 0 && c == '0') state = 2;
        if (state == 0 && c == '1') state = 1;
        if (state == 1&& c == '0') state = 3;
        if (state == 1 && c == '1') state = 2;
        if (state == 2 && c == 'O') state = 2;
        if (state == 2 && c == '1') state = 2;
        if (state == 3 && c == 'O') state = 2
        if (state == 3 && c == '1') state = 1;
    }
```

 if (state == 3)
 printf("Yes.\n");
 else
 printf("No.\n");
 return 0 ;
 \}

Better C Code for FSA

```
fsa2.c
#include <stdio.h>
#define StAtes 4
#define ALPHABET_SIZE 2
#define START_STATE 0
#define ACCEPT_STATE 3
int main(void) {
    int c, state = START_STATE
    int transition[STATES][ALPHABET_SIZE] =
        { {2, 1}, {3, 2}, {2, 2}, {2, 1} };
    while ((c = getchar()) != EOF)
        if (c >= 'O' && c < 'O' + ALPHABET_SIZE)
        state = transition[state][c - '0'];
    if (state == ACCEPT_STATE) printf("Yes.\n");
    else printf("No.\n");
    return 0;
}
```


A Third Example

Build an FSA that accepts all strings that contain 'acat' as a substring.

- tgacatg
. acacatg

Start building:

What bit strings does it accept?
. Yes: $0,11110,00000,100100111011$, all bit strings with an odd number of 0's.
. No: 1, 1111, 00, 1011100111011, all bit strings with an even number of 0 's.

A Third Example

Build an FSA that accepts all strings that contain 'acat' as a substring.

- tgacatg
- acacatg

Finish building:

An Application: Bounce Filter

Bounce filter: remove isolated b's and g's in input.
. Input:
b b g b b b g g b g g g g b b b b
. Output (one-bit delay): b b b b b b g g g g g g g b b b b

no accept state - instead output color of each state you visit

An Application: Bounce Filter

Bounce filter: remove isolated b's and g's in input.

- Input:
b b g b b b g g b g g g g b b b b
. Output (one-bit delay): b b b b b b g g g g g g g b b b b
State interpretations.
. 0: start
. BB: at least two consecutive b's.
- G: sequence of b's followed by g.
- GG: at least two consecutive g's.
- B: sequence of g's followed by b.

Crossword Puzzle or Scrabble Too Hard?

/usr/dict/words is a list of $(25,143)$ words in dictionary.

Egrep Pattern Conventions

Conventions for egrep:
c any non-special character matches itself
. any single character
r* zero or more occurrence of r
(x) grouping
$r 1 \mid r 2 \quad$ logical $O R$
[aeiou] any vowel
[^ aeiou] any non-vowel
ヘ beginning of line
\$ end of line

Flags for egrep:
egrep -v match all lines except those specified by pattern

Still More Examples

Unix

Fundamental Questions: Theoretical Minimum

Which aspects are essential?

- Unix egrep regular expressions are useful.
- But more complex than theoretical minimum.
- egrep theoretical minimum:
c any non-special character matches itself
r* zero or more occurrence of r
(x) grouping
$r 1 \mid r 2 \quad$ logical OR

Fundamental Questions: What Kinds of Patterns

What kinds of patterns can be specified? (all but one of following)

All bit strings that:

- Begin with 0 and end with 1.
- Have more 1's than 0's.
- Have no consecutive 1's.
- Has and odd number of 0's.
- Has 011010 as a substring.

Example
00010110111
01111001100
01001010010
01001010010
00011010000

Fundamental Questions: What Kinds of Patterns

What kinds of patterns can be specified? (all but one of following)

All bit strings that:

- Begin with 0 and end with 1.
- Have more 1's than 0's.
. Have no consecutive 1's.
- Has and odd number of 0's.
- Has 011010 as a substring.

Regular Expression
0 (0|1) *1
not possible
(0 | 10)*(1 | 0*)
(1*01*01*)*(1*01*)
(0|1)*011010 (0|1) *

Formal Languages

An alphabet is a finite set of symbols.

- Binary alphabet $=\{0,1\}$
. Lower-case alphabet $=\{a, b, c, d, \ldots, y, z\}$
- Genetic alphabet $=\{a, c, t, g\}$

A string is a finite sequence of symbols in the alphabet.

- ' 0111011011^{\prime} is a string in the binary alphabet.
. 'tigers' is a string in the lower-case alphabet.
. 'acctgaacta' is a string in the genetic alphabet.

A formal language is an (unordered) set of strings in an alphabet.

- Can have infinitely many strings.
- Examples:
\{0, 010, 0110, 01110, 011110, 0111110, ...\}
$\{11,1111,111111,11111111,1111111111, \ldots\}$

Formal Languages

Can cast any computation as a language recognition problem.
. Is $x=23,536,481,273$ a prime number?

FSA.
. Machine determines whether a string is in language.

Regular expression.
. Shorthand method for specifying a language.

Duality Between FSA's and RE's

Observation: for each FSA we create, we can find a regular expression that matches the same strings that the FSA accepts.

Is this always the case?

What about the OTHER way around?

Stay tuned: see Lecture T2.

Limitations of FSA

No FSA can recognize the language of all bit strings with an equal number of 0's and 1's.

- Suppose an N-state FSA can recognize this language.
- Consider following input: 0000000011111111

$$
\underbrace{N+1 \text { 1's }}_{N+1 \text { 0's }}
$$

. FSA must accept this string.

- Some state x is revisited during first $\mathrm{N}+10$'s since only N states.
 0000000011111111

- Machine would accept same string without intervening 0's. 000011111111
- This string doesn't have an equal number of 0's and 1's.

Limitations of FSA

FSA are simple machines.

- \mathbf{N} states \Rightarrow can't remember more than \mathbf{N} things.
- Some languages require remembering more than \mathbf{N} things.

No FSA can recognize the language of all bit strings with an equal number of 0 's and 1's.

A warmup exercise:

If 01 xyz accepted then so is 00001 xyz

Looking Ahead

Today.

- Defined a simple abstract machine = FSA.
- Capable of pattern matching.
. Incapable of "counting."
Hmm. Which will we run out of first?
. Need to consider more powerful machines

Future lectures.

- Define an abstract machine.
. Understand how it works and what it can do.
- Find things it can't do.
- Define a more powerful machine.
- Repeat until we run out of problems or machines.

Lecture T1: Supplemental Notes

A Fourth Example

FSA to decide if integer (represented in binary) is divisible by 3 ?

What bit strings does it accept?

- Yes: $11\left(3_{10}\right), 110\left(6_{10}\right), 1001\left(9_{10}\right), 1100\left(12_{10}\right), 1111\left(15_{10}\right), 10011$ $\left(18{ }_{10}\right)$, integers divisible by 3.
- No: $1\left(1_{10}\right), 10\left(2_{10}\right), 100\left(4_{10}\right), 101\left(5_{10}\right), 111\left(7_{10}\right)$, integers not divisible by 3 .

A Fourth Example

FSA to decide if input (convert binary to decimal) is divisible by 3 ?

How does it work?
. State 0: input so far is divisible by 3.

- State 1: input has remainder 1 upon division by 3.
- State 2: input has remainder 2 upon division by 3.
- Transition example.
- Input $1100\left(12_{10}\right)$ ends in state 0.
- If next bit is 0 then stay in state 0: $11000\left(\mathbf{2 4}_{10}\right)$.
- Adding 0 to last bit is same as multiplying number by 2. Remains divisible by 3.

