
Lecture S2: Operating Systems

5

What is an Operating System?

Modern operating systems support:

■ Software tools for creating programs (Lecture S3).
– libraries, compilers

■ Running multiple programs.
– multiprogramming

■ Saving/accessing data.
– files, virtual memory

■ User interaction.
– window system

■ Interaction with other systems.
– networking

■ Core applications programs.
– client-server

6

What is an Operating System?

Execution Control.

■ OS keeps track of state of CPU, devices.

External Devices.

■ Display, keyboard, mouse, disks, CD, network.

Virtual Machines.

■ Pretend machines that each person/program can use.

■ OS implements abstract devices.
! Simpler for user than real hardware.
! Easier to change to new hardware.

7

Multiprogramming

Operating system "kernel" keeps track of several programs.

■ CPU does 1 thing at a time.

■ Goal: illusion of multiple machines.

INTERRUPT:

■ Part of hardware of real machines (not discussed with TOY).
– stop
– save PC somewhere "special"
– change PC

■ Necessary to manage input-output devices.
– mouse click, keyboard

■ OS allows several programs to "share" CPU by keeping table of
"current" PC’s for programs setting clock to interrupt periodically.

– arizona
– round-robin or user priorities

8

Multiprogramming: Two Useful Properties

RELOCATABLE program.

■ Can be moved while it is executing.
(useful if OS rearranges memory a la malloc)

REENTRANT program.

■ Can be executed while it is executing.
– same program running for multiple users

■ Only load one copy of program.
– emacs, gcc

9

Virtual Memory

Problem 1: several programs need to share same memory.

■ Direct solution: apportion up the memory.

Problem 2: program needs more memory than machine has.

■ Direct solution: "overlays."
– program shuffles its own data in and out of memory to disk

! Nightmare for programmers.

It’s all just memory, why should file system look more complicated?

"Better" solution: VIRTUAL MEMORY (1960’s).

■ All programs assume access to all memory.

■ Each program actually uses a small portion.

10

Virtual Memory

VIRTUAL MACHINES.

■ Simulate multiple copies of a machine on itself.

■ Ex: can debug OS.

Physical address space.

■ How much real memory is there?

■ Limitation: $ per bit cost.

Virtual address space.

■ Maximum amount of memory an instruction can directly reference.
! Size of pointer.

■ Limitation: address size (bits / instruction).

11

Size of Virtual Memory

How many bits is enough?

■ 16 bits is not enough.

■ 32 bits is not enough.

■ 64 bits?
– 264 = 18,446,744,073,709,551,616 > 1019 addresses

■ 512 certainly enough.
! No need for relocation, use a galactic address dispenser.

Some big numbers.

■ 270: number of grains of sand on beach at Coney Island.

■ 293: number of oxygen atoms in a thimble.

■ 2256: number of electrons in the universe.

More sophisticated paging strategies needed.

12

Paging

Paging: widely-used method to implement virtual memory.

■ Design hardware to "trap" all addresses.

■ Keep virtual memory (for each program) on disk.
– only part that CPU is currently accessing is in main memory

Divide into PAGES. Keep table with:

■ Flag indicating if page is in memory.

■ Relative position of page in memory.

Make page size = 2x, use leading bits of address for page name

Each memory reference:

■ Check if page is in memory.

■ Get it from disk if not.

■ Use page table to reset upper address bits.

13

Paging

Each page brought in has to REPLACE another.

■ Page replacement strategies.
– Ex. least recently used

■ Still being studied, invented.

Basic principles.

■ MEMORY HIERARCHY
– local: fast, small, expensive
– remote: slow, huge, cheap

■ Tradeoff speed for cost.

■ CACHE recently accessed information.
! Program thinks it has fast *and* huge memory.

14

Window Manager

Virtual Terminals.

■ Each program has its own virtual display.

■ Ex. X-terminal: complex, customizable, virtual!

■ Just another simulation program.

■ Commonplace today, rare in 1985

■ Ingenious design meets accelerating technology.

History.

■ Xerox PARC (Alto), Macintosh, Windows NT, X-terminal, Netscape.

Problem or opportunity?

■ Truly "virtual."

■ Moving away from grounding in reality.
– harder for programmers to understand what is happening

■ Flexibility vs. standardization.

■ Other ways of interacting with computer?

15

Client-Server Model

System divided into two distinct parts.

■ Ex: display server (implement virtual display).
– draw stuff on screen
– monitor keyboard and mouse input

■ Ex: Client (use virtual display).
– applications programs

Server is interface between client program and display hardware.

Model generalizes beyond display management.

■ Client: request service.

■ Server: do the work.

Advantages.

■ Single server can handle multiple clients.

■ Keeps kernel simple, adaptable.

■ Smooth transition to DISTRIBUTED SYSTEM.

16

The Network

"Ultimate" distributed system.

INTERNET

■ "All the cooperating networks."

Circuit switched network

■ Phone system.
Packet switched network

■ Network system.

IP: Internet protocol.

■ Packet.
– 1-1500 bytes
– from address
– to address

■ Address.
– Ex. 128.112.128.43

ROUTERS

■ Move packets across network.

TCP: Transmission control protocol.

■ Break big messages into packets.

■ Collect received packets into
messages.

■ Check for errors.

Domain Name System.

■ Distribute authority/responsibility
for name service.

■ Can use "phoenix.princeton.edu"
instead of 128.112.128.43.

(many details omitted!)

17

Operating System / Network Issues

Network applications.

■ Communication (mail, news).

■ Remote login (telnet).

■ File transfer (ftp, Napster,
Gnutella).

■ Publishing (html).

■ Browsing (Netscape, IE).

■ E-commerce.

Modern rendition of ancient tradeoffs.

■ Personal computer or Network
computer.

■ ONE huge virtual machine?!?

Compare/contrast.

■ Computer center, phone system,
Post office (snail mail), Libraries.

Current network ethics:

■ Honor and foster individualism.

■ Network is good and must be
preserved.

Should hackers or the government
"run" the net?

■ Can commercial apps trust an
"open net"?

■ Does a "closed net" violate
individual rights?

Security/Privacy/Copyright.

Who owns? Who pays?

18

Unix File System Layout

Goal: provide simple abstraction
(sequence of bytes) for user
programs.

Each disk has:

■ I-nodes (one per file).
– indexing information
– pointers to disk blocks

■ Data blocks.
– just data

Superblock (block 1).

■ Catalog of disk layout.

■ Size and number of data blocks.

■ Size and number of i-nodes.

■ Free list of data blocks.

File.

■ List of data blocks.

Directory.

■ List of file names.

■ i-node addresses

Forms a TREE structure.

■ Traverse the tree for sequential
access.

19

File Layout Examples

Small file.

■ I-node lists data blocks.

■ Ex: 10 i-node entries, 1K data
blocks.

– handles files < 10K

Medium-sized file.

■ i-node lists blocks that list
data blocks.

■ Ex: 10 i-node entries.
– 256 data block

pointers/block
– handles files < 2.56 M

Large file.

■ Add a third level.

■ Ex: 10*256*256*1K = 655.36 M.

Tradeoff on data block size.

■ Too small: large files are
excessively fragmented.

■ Too large: excess waste in
small files.

