Cryptology

Lecture S1: Cryptology

Cryptology.

Science of secret communication.

Goal: information security in presence of malicious adversaries.

- Confidentiality.
- Integrity.
 - 2
- Authentication.
 - 2
- Authorization.
 - 2000
- Non-repudiation.

Analog Cryptology

Implementation.

Task.

- Protect information.
- Identification.
- Contract.
- . Money transfer.
- Public auction.
- Poker.
- Public election.
- Public lottery.
- Anonymous communication.

Digital Cryptologoy

Our goal.

- . Implement all tasks digitally.
- Implement additional tasks that can't be done with physics!
 - play poker over phone
 - anonymous elections where everyone learns winner, but nothing else!

Fundamental questions.

- Is any of this possible?
- . How?

Today.

- . Give flavor of modern digital cryptology.
- Implemented a few of these tasks.
- . Sketch a few technical details.

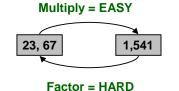
Digital Cryptology Axioms

Axiom 1.

Players can toss coins.

Axiom 2.

• Players are computationally limited. A P

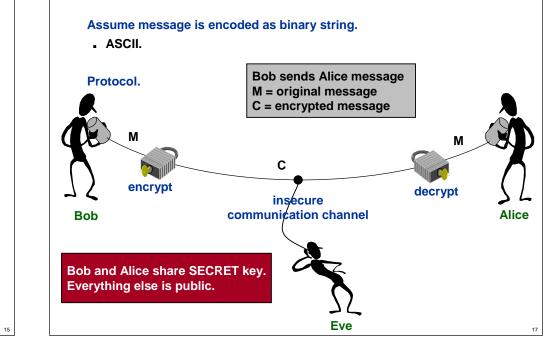


 Factoring is hard computationally.

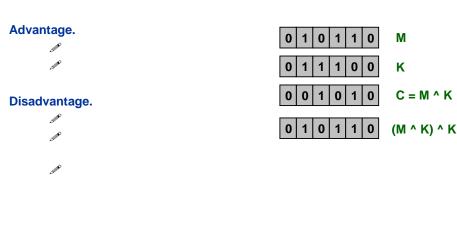
Theorem.

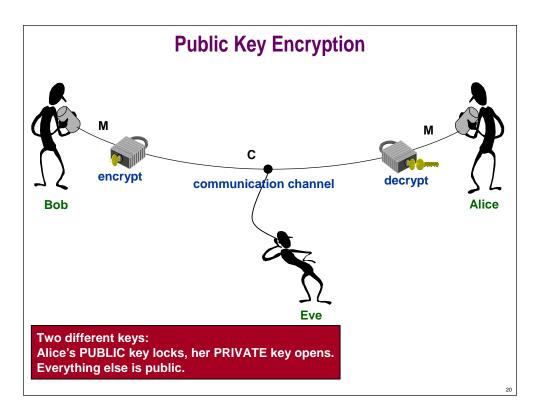
Axiom 3.

Digital cryptography exists.



Private Key Encryption





Bob has N-bit message M to send Alice.

- . Alice and Bob share N-bit private key K.
- Bob computes C = M ^ K and sends C.
- Alice receives C and computes C ^ K = (M ^ K) ^ K = M.

Public Key Encryption

Bob has N-bit message to send to Alice.

- Alice has public and secret key.
 - PUBLIC key = published on Web in digital phonebook (VeriSign)
 PRIVATE key = known only by Alice
- Bob encrypts message using Alice's public key.
- Alice decrypts message using her private key.

To achieve security, need following properties:

- . Can encrypt message efficiently with public key.
- . Can decrypt message efficiently with private key.
- . CANNOT decrypt message efficiently with public key alone.

Modular Arithmetic

Do all computations modulo some base n.

- $10 + 4 \pmod{12} = 2$
- . 38 * 15 (mod 280) = 570 (mod 280) = 10

RSA Public-Key Cryptosystem

RSA cryptosystem (Rivest-Shamir-Adleman, 1978).

- Most widely used public-key cryptosystem (500 million users).
- Sun, Microsoft, Apple, browsers, cell phones, ATM machines, ...

Key generation.

- Select two large prime numbers p and q at random.
- Compute n = pq, and $\phi = (p-1)(q-1)$.
- . Choose integer e that is relatively prime to $\boldsymbol{\varphi}.$
- Compute d such that $d e \equiv e d \equiv 1 \pmod{\phi}$.
- Publish (e, n) as public key.
- Keep (d, n) as secret key.

Note: don't even need to keep p, q, or ϕ .

- . $\boldsymbol{\phi}$ only needed to compute d.
- Saving p, q speeds up decryption (Chinese Remainder Theorem).

RSA Public-Key Cryptosystem

Bob sends message M to Alice.

- M < n
- Bob obtains Alice's public key (e, n) from Internet.
- Bob computes C = M^e (mod n).

Alice receives message C.

- Alice uses her secret key (d, n).
- Alice computes M' = C^d (mod n).

Why does it work? Need M = M'. Intuitively.

- M' ≡ C^d (mod n) ≡ M^{ed} (mod n) ≡ M Recall: e d ≡ 1 (mod φ).
- Argument not rigorous because of mod.
 - rigorous argument uses fact that p and q are prime, and $\phi = (p-1)(q-1)$.

23

p = 11, q = 29

e = 3, d = 187

M = 100

 $n = 319, \phi = 280$

RSA Example

RSA Details

Parameters.

- p = 47, q = 79, n = 3713, φ = 3588 e = 17, d = 3377
- M = 2003

2003 ¹⁷	(mod 3713)
= 2003 ¹⁶ * 2003 ¹	(mod 3713)
= 3157 * 2003	(mod 3713)
= 6323471	(mod 3713)
= 232	

Modular exponentiation.

- 2003¹⁷ (mod 3713)
 - = 134454746427671370568340195448570911966902998629125654163 (mod 3713) = 232

(mod 3713) = 1612

Better alternative (repeated squaring).

- 2003¹ (mod 3713) = 2003
- . 2003² (mod 3713) = 4,012,009 (mod 3713) = 1969
- $2003^4 \pmod{3713} = 1969^2 \pmod{3713} = 589$
- 2003⁸ (mod 3713) = 589²
- 2003¹⁶ (mod 3713) = 3157

How large should n = pq be?

- . 1,024 bits for long term security.
- IE, Netscape: 40, 56, 128 bit.
- . Too small \Rightarrow easy to break.
- Too large \Rightarrow time consuming to encrypt/decrypt.

How to choose large "random" prime numbers?

- Miller-Rabin procedure checks whether x is prime. Usually!
- Number theory $\Rightarrow\,$ n / \log_e n prime numbers between 2 and n. \checkmark

How to compute d efficiently?

- Existence guaranteed since $gcd(e, \phi) = 1$.
- Fancy version of Euclid's algorithm.

RSA Attacks

Factoring.

- Factor n = pq.
- . Then compute $\boldsymbol{\varphi}.$
- . Then compute e.

Timing attacks.

 Reconstruct d by sending C and monitoring how long it takes to compute C^d (mod n).

2. 2

Other means?

. Long-standing open research question.

Note: Diffie-Helman cryptosystem can be broken if and only if factoring is hard.

• Discrete log: given x, n, C, find d such that $x^d \mod n = C$.

RSA Digital Signature

Alice wants to send Bob a response S.

- Alice uses private key d and computes: $S' \equiv S^d \pmod{n}$.
- Alice sends (S, S').

Bob receives digital signed response (S, S').

- Bob uses Alice's public key e and checks if $S \equiv (S')^e \pmod{n}$.
- If yes, then Bob concludes S sent by Alice.
- If no, then Bob concludes S or S' corrupted in transmission, or message is a forgery.
 Note: S^{ed} = S^{de} = S

(commutativity)

Third party.

- Bob verifies Alice's signature on digitally signed message (e.g., electronic check).
- Bob forwards digitally signed message to bank.
- Bank re-verifies Alice's signature.

RSA Tradeoffs

RSA Applications

Advantages.

Disadvantages.

. Sun, Microsoft, Apple, Novell.

. S/MIME, SSL, S/WAN.

Microsoft Outlook.

Operating systems.

Secure Internet communication.

Hardware.

. Cell phones.

Browsers.

PGP.

- ATM machines.
- Wireless ethernet cards.
- Smart cards (Mondex).
- Palm Pilots.

Bad Cryptologoy

Content Scrambling System (CSS).

- . Used to encrypt DVD's.
- . Each disc has 3 40-bit keys.
- Each DVD decoder (software/hardware) has unique 40-bit key.
- "Not possible" to play back on computer without disc.

DeCSS. (Canman and SøupaFrøg, 1999).

- Decryption algorithm written by two Norwegians
- . Used "in-circuit emulator" to monitor hardware activity.

Why CSS is fatally flawed.

Cryptography: Extra Slides

RSA Public-Key Cryptosystem

Why does it work? Rigorously.

• M' = C^d (mod n) = M^{ed} (mod n)

Now, since $\phi = (p-1)(q-1)$ and $e d \equiv 1 \pmod{\phi}$

ed = 1 + k(p-1)(q-1) for some integer k.

A little manipulation.		Fermat's Little Theorem	
• $M^{ed} \equiv M M^{(p-1) k(q-1)}$ $\equiv M (1)^{k(q-1)}$	(mod p) (mod p)	if p is prime, then for all $a \neq 0$ $a^{p-1} \equiv 1 \pmod{p}$	
= M	(mod p)		
(trivially true if $M \equiv 0$)			
• $M^{ed} \equiv M$	(mod q)	Chinese Remainder Theorem	
Finally. ▪ M ^{ed} ≡ M	(mod pq) بــــ	if p, q prime then for all x, a $x \equiv a \pmod{pq} \iff$ $x \equiv a \pmod{p}, x \equiv a \pmod{q}$	
	n		