Lecture S1: Cryptology

Analog Cryptology

Task.

Implementation.

- Protect information.
- Identification.
- Contract.
- Money transfer.
- Public auction.
- Poker.
- Public election.
- Public lottery.
- Anonymous communication.

Cryptology

Cryptology.

- Science of secret communication.

Goal: information security in presence of malicious adversaries.

- Confidentiality.
- Integrity.
,
- Authentication.
- Authorization.
)
. Non-repudiation.

Digital Cryptologoy

Our goal.

- Implement all tasks digitally.
- Implement additional tasks that can't be done with physics!
- play poker over phone
- anonymous elections where everyone learns winner, but nothing else!

Fundamental questions.

- Is any of this possible?
- How?

Today.

- Give flavor of modern digital cryptology.
- Implemented a few of these tasks.
- Sketch a few technical details.

Digital Cryptology Axioms

Axiom 1.

- Players can toss coins.

Axiom 2.

- Players are computationally limited.

Axiom 3.

- Factoring is hard computationally.
$\$$

Factor $=$ HARD

Theorem.

- Digital cryptography exists.

Private Key Encryption

Assume message is encoded as binary string.

- ASCII.

Private Key Encryption

Bob has N -bit message M to send Alice.

- Alice and Bob share N-bit private key K.
- Bob computes $\mathbf{C}=\mathbf{M} \wedge K$ and sends C.
- Alice receives C and computes $C \wedge K=\left(M^{\wedge} K\right)^{\wedge} K=M$.

Public Key Encryption

Public Key Encryption

Bob has N -bit message to send to Alice.

- Alice has public and secret key.
- PUBLIC key = published on Web in digital phonebook (VeriSign)
- PRIVATE key = known only by Alice
- Bob encrypts message using Alice's public key.
- Alice decrypts message using her private key.

To achieve security, need following properties:

- Can encrypt message efficiently with public key.
- Can decrypt message efficiently with private key.
- CANNOT decrypt message efficiently with public key alone.

Modular Arithmetic

Do all computations modulo some base n.

- $10+4(\bmod 12)=2$
- $38 * 15(\bmod 280)=570(\bmod 280)=10$

RSA Public-Key Cryptosystem

Bob sends message M to Alice.

- Bob obtains Alice's public key (e, n) from Internet.
- Bob computes $\mathbf{C}=\mathrm{M}^{\mathrm{e}}(\bmod \mathrm{n})$.

Alice receives message C.

- Alice uses her secret key (d, n).
- Alice computes $\mathbf{M}^{\prime}=\mathbf{C l}^{d}(\bmod n)$.

Why does it work? Need $M=M^{\prime}$. Intuitively.

- $M^{\prime} \equiv C^{d} \quad(\bmod n)$
$\equiv M^{\text {ed }}(\bmod n)$
$\equiv M \quad$ Recall: ed $\equiv \mathbf{1}(\bmod \phi)$.
- Argument not rigorous because of mod.
- rigorous argument uses fact that p and q are prime, and $\phi=(p-1)(q-1)$.

RSA Example

Parameters.

- $p=47, q=79, n=3713, \phi=3588$
e=17, d=3377
- $M=2003$

Modular exponentiation.

	2003^{17}	$(\bmod 3713)$
$=$	$2003^{16} * 2003^{1}(\bmod 3713)$	
$=$	$3157^{*} 2003$	$(\bmod 3713)$
$=$	6323471	$(\bmod 3713)$
$=$	232	

- 2003^{17} (mod 3713)
$=134454746427671370568340195448570911966902998629125654163(\bmod 3713)$
= 232

Better alternative (repeated squaring).

- $2003^{1}(\bmod 3713)=2003$
- $2003^{2}(\bmod 3713)=4,012,009(\bmod 3713)=1969$
- $2003^{4}(\bmod 3713)=1969^{2} \quad(\bmod 3713)=589$
- $2003^{8}(\bmod 3713)=589^{2} \quad(\bmod 3713)=1612$
- $2003{ }^{16}(\bmod 3713)=3157$

RSA Details

How large should $\mathrm{n}=\mathrm{pq}$ be?

- 1,024 bits for long term security.
- IE, Netscape: 40, 56, 128 bit.
- Too small \Rightarrow easy to break.
. Too large \Rightarrow time consuming to encrypt/decrypt.

How to choose large "random" prime numbers?

- Miller-Rabin procedure checks whether x is prime. Usually! ∞
- Number theory $\Rightarrow \mathbf{n} / \log _{\mathrm{e}} \mathbf{n}$ prime numbers between 2 and \mathbf{n}.

How to compute d efficiently?

- Existence guaranteed since $\operatorname{gcd}(\mathrm{e}, \phi)=1$.
- Fancy version of Euclid's algorithm.

RSA Attacks

Factoring.

- Factor $\mathbf{n}=\mathrm{pq}$.
- Then compute ϕ.
- Then compute e .

Timing attacks.

- Reconstruct d by sending C and monitoring how long it takes to compute $C^{d}(\bmod n)$.

Other means?

- Long-standing open research question.

Note: Diffie-Helman cryptosystem can be broken if and only if factoring is hard.

- Discrete log: given x, n, C, find d such that $x^{d} \bmod \mathbf{n}=C$.

RSA Digital Signature

Alice wants to send Bob a response S.

- Alice uses private key d and computes: $S^{\prime} \equiv S^{d} \quad(\bmod n)$.
- Alice sends (S, S').

Bob receives digital signed response ($\mathrm{S}, \mathrm{S}^{\prime}$).

- Bob uses Alice's public key e and checks if $S \equiv\left(S^{\prime}\right)^{e}(\bmod n)$.
- If yes, then Bob concludes S sent by Alice.
- If no, then Bob concludes S or S' corrupted in transmission, or message is a forgery.

Third party.

- Bob verifies Alice's signature on digitally signed message (e.g., electronic check).
- Bob forwards digitally signed message to bank.
- Bank re-verifies Alice's signature.

RSA Tradeoffs

Advantages.

Disadvantages.
$\%$

2

Bad Cryptologoy

Content Scrambling System (CSS).

- Used to encrypt DVD's.
- Each disc has 3 40-bit keys.
- Each DVD decoder (software/hardware) has unique 40-bit key.
. "Not possible" to play back on computer without disc.

DeCSS. (Canman and SøupaFrøg, 1999).

- Decryption algorithm written by two Norwegians
. Used "in-circuit emulator" to monitor hardware activity.

Why CSS is fatally flawed.

$$
\infty
$$

RSA Applications

Secure Internet communication.

- Browsers.
- S/MIME, SSL, S/WAN.
- PGP.
. Microsoft Outlook.

Operating systems.

- Sun, Microsoft, Apple, Novell.

Hardware.

- Cell phones.
. ATM machines.
. Wireless ethernet cards.
. Smart cards (Mondex).
- Palm Pilots.

Cryptography: Extra Slides

RSA Public-Key Cryptosystem

Why does it work? Rigorously.

- $M^{\prime}=C^{d} \quad(\bmod n)$ $=M^{\text {ed }}(\bmod n)$

Now, since $\phi=(p-1)(q-1)$ and ed $\equiv 1(\bmod \phi)$

- $e d=1+k(p-1)(q-1)$ for some integer k.

A little manipulation.

- $\mathbf{M e d}^{\mathbf{e d}} \equiv \mathbf{M ~ M}^{(p-1)} \mathbf{k}(q-1)$
$(\bmod p)$ $(\bmod p)$ $(\bmod p)$
$\equiv \mathbf{M}$
$(\bmod q)$
- $M^{\text {ed }} \equiv M \quad(\bmod q)$

Finally.

- $\mathbf{M}^{\text {ed }} \equiv \mathbf{M}$
$(\bmod p q)$

Fermat's Little Theorem
 if p is prime, then for all $\mathbf{a} \neq 0$
 $a^{p-1} \equiv 1(\bmod p)$

Chinese Remainder Theorem
if p, q prime then for all x, a $\mathbf{x} \equiv \mathbf{a}(\bmod \mathrm{pq}) \Leftrightarrow$
$x \equiv a(\bmod p), x \equiv a(\bmod q)$

