
Lecture S1:  Cryptology
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Cryptology

Cryptology.

■ Science of secret communication.

Goal:  information security in presence of malicious adversaries.

■ Confidentiality.
! Keep communication private.

■ Integrity.
! Detect unauthorized alteration to communication.

■ Authentication.
! Confirm identity of sender.

■ Authorization.
! Establish level of access for trusted parties.

■ Non-repudiation.
! Prove that communication was received.
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Analog Cryptology

Implementation.Task.

■ Protect information.

■ Identification.

■ Contract.

■ Money transfer.

■ Public auction.

■ Poker.

■ Public election.

■ Public lottery.

■ Anonymous communication.
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Digital Cryptologoy

Our goal.

■ Implement all tasks digitally.

■ Implement additional tasks that can’t be done with physics!
– play poker over phone
– anonymous elections where everyone learns winner, but 

nothing else!

Fundamental questions.

■ Is any of this possible?

■ How?

Today.

■ Give flavor of modern digital cryptology.

■ Implemented a few of these tasks.

■ Sketch a few technical details.
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Digital Cryptology Axioms

Axiom 1.

■ Players can toss coins.
! Crypto impossible without randomness.

Axiom 2.

■ Players are computationally limited.
! Polynomial time.

Axiom 3.

■ Factoring is hard computationally.
! 1-way trapdoor function.

Theorem.

■ Digital cryptography exists.
! Can do all previous tasks DIGITALLY.

23, 67 1,541

Multiply = EASY

Factor = HARD
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Private Key Encryption

Assume message is encoded as binary string.

■ ASCII.

Protocol.

Bob Alice

M M

Eve

insecure 
communication channel

encrypt decrypt

C

Bob sends Alice message
M = original message
C = encrypted message

Bob and Alice share SECRET key.
Everything else is public.

18

Private Key Encryption

Bob has N-bit message M to send Alice.

■ Alice and Bob share N-bit private key K.

■ Bob computes C = M ^ K and sends C.

■ Alice receives C and computes C ^ K = (M ^ K) ^ K = M.

Advantage.
! Provably secure if key is random.
! Simple to implement.

Disadvantage.
! Hard to implement.
! Non-repudiation? Need to trust

other party.
! How to securely distribute keys?

^ means bitwise XOR

1 1 0010

1 0 0110

0 1 0100

M

K

C = M ^ K

1 1 0010 (M ^ K) ^ K
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Public Key Encryption

encrypt decrypt

Bob Alice

Eve

M

C

M

communication channel

Two different keys:
Alice’s PUBLIC key locks, her PRIVATE key opens.
Everything else is public.
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Public Key Encryption

Bob has N-bit message to send to Alice.

■ Alice has public and secret key.
– PUBLIC key  = published on Web in digital phonebook (VeriSign)
– PRIVATE key = known only by Alice

■ Bob encrypts message using Alice’s public key.

■ Alice decrypts message using her private key.

To achieve security, need following properties: 

■ Can encrypt message efficiently with public key.

■ Can decrypt message efficiently with private key.

■ CANNOT decrypt message efficiently with public key alone.
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Modular Arithmetic

Do all computations modulo some base n.

■ 10 + 4  (mod 12)    = 2

■ 38 * 15 (mod 280)  =  570 (mod 280)  =  10
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RSA Public-Key Cryptosystem

RSA cryptosystem (Rivest-Shamir-Adleman, 1978).

■ Most widely used public-key cryptosystem (500 million users).

■ Sun, Microsoft, Apple, browsers, cell phones, ATM machines, . . .

Key generation.

■ Select two large prime numbers p and q at random.

■ Compute n = pq, and φ = (p-1)(q-1).

■ Choose integer e that is relatively prime to φ.

■ Compute d such that  d e ≡ e d ≡ 1 (mod φ).

■ Publish (e, n) as public key.

■ Keep (d, n) as secret key.

Note:  don’t even need to keep p, q, or φ. 

■ φ only needed to compute d.

■ Saving p, q speeds up decryption (Chinese Remainder Theorem).

p = 11, q = 29

n = 319, φ = 280 
e = 3, d = 187
M = 100
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RSA Public-Key Cryptosystem

Bob sends message M to Alice.

■ Bob obtains Alice’s public key  (e, n) from Internet.

■ Bob computes C = Me (mod n).

Alice receives message C.

■ Alice uses her secret key (d, n).

■ Alice computes M’ = Cd (mod n).

Why does it work?  Need M = M’.  Intuitively.

■ M’ ≡ Cd (mod n) 
≡ Med (mod n)
≡ M        Recall:   e d ≡ 1 (mod φ). 

■ Argument not rigorous because of mod.
– rigorous argument uses fact that p and q are prime, and

φ = (p-1)(q-1).

M < n
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RSA  Example

Parameters.

■ p = 47, q = 79, n = 3713, φ = 3588
e = 17, d = 3377

■ M = 2003

Modular exponentiation.

■ 200317 (mod 3713)
= 134454746427671370568340195448570911966902998629125654163 (mod 3713)
= 232

Better alternative (repeated squaring).

■ 20031 (mod 3713) = 2003

■ 20032 (mod 3713) = 4,012,009 (mod 3713) = 1969

■ 20034 (mod 3713) = 19692 (mod 3713) = 589

■ 20038 (mod 3713) = 5892 (mod 3713) = 1612

■ 200316 (mod 3713) = 3157

200317 (mod 3713)
= 200316 * 20031 (mod 3713)
= 3157 * 2003 (mod 3713)
= 6323471 (mod 3713)
= 232
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RSA Details

How large should n = pq be?

■ 1,024 bits for long term security.

■ IE, Netscape: 40, 56, 128 bit.

■ Too small  ⇒ easy to break.

■ Too large  ⇒ time consuming to encrypt/decrypt.

How to choose large "random" prime numbers?

■ Miller-Rabin procedure checks whether x is prime. Usually!
! Guess, and use subroutine to check.

■ Number theory  ⇒ n / loge n prime numbers between 2 and n.
! Primes are plentiful:  4.3 × 1097 with ≤ 100 digits.

How to compute d efficiently?

■ Existence guaranteed since gcd(e, φ) = 1. 

■ Fancy version of Euclid’s algorithm.
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RSA Attacks

Factoring.

■ Factor n = pq.

■ Then compute φ.

■ Then compute e.

Timing attacks.

■ Reconstruct d by sending C and monitoring how long it takes to 
compute Cd (mod n).

! Defense:  make running time independent of C.

Other means?

■ Long-standing open research question.

Note: Diffie-Helman cryptosystem can be broken if and only if 
factoring is hard.

■ Discrete log:  given x, n, C, find d such that  xd mod n = C.
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RSA Digital Signature

Alice wants to send Bob a response S.

■ Alice uses private key d and computes:  S’ ≡ Sd (mod n).

■ Alice sends (S, S’).

Bob receives digital signed response (S, S’).

■ Bob uses Alice’s public key e and checks if  S ≡ (S’)e (mod n).

■ If yes, then Bob concludes S sent by Alice.

■ If no, then Bob concludes S or S’ corrupted in transmission, or 
message is a forgery.

Third party.

■ Bob verifies Alice’s signature on digitally signed message
(e.g., electronic check).

■ Bob forwards digitally signed message to bank.

■ Bank re-verifies Alice’s signature.

Note:  Sed = Sde = S
(commutativity)
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RSA Tradeoffs

Advantages.
! Only one public and one private key per individual

(not per message).
! Digital signatures.
! Relatively easy to implement (Assignment 10).

Disadvantages.
! Security relies on decryption being "computationally 

inefficient."
! Relatively expensive to decrypt.
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RSA Applications

Secure Internet communication.

■ Browsers.

■ S/MIME, SSL, S/WAN.

■ PGP.

■ Microsoft Outlook.

Operating systems.

■ Sun, Microsoft, Apple, Novell.

Hardware.

■ Cell phones.

■ ATM machines.

■ Wireless ethernet cards.

■ Smart cards (Mondex).

■ Palm Pilots.
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Bad Cryptologoy

Content Scrambling System (CSS).

■ Used to encrypt DVD’s.

■ Each disc has 3 40-bit keys.

■ Each DVD decoder (software/hardware) has unique 40-bit key.

■ "Not possible" to play back on computer without disc.

DeCSS.  (Canman and SøupaFrøg, 1999).

■ Decryption algorithm written by two Norwegians

■ Used "in-circuit emulator" to monitor hardware activity.

Why CSS is fatally flawed.
! Proprietary ad hoc algorithm.
! 40 bit keys.

Cryptography:  Extra Slides
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RSA Public-Key Cryptosystem

Why does it work?  Rigorously.

■ M’ = Cd (mod n) 
= Med (mod n)

Now, since φ = (p-1)(q-1) and e d ≡ 1 (mod φ)

■ ed = 1 + k(p-1)(q-1) for some integer k.

A little manipulation.

■ Med ≡ M M(p-1) k(q-1) (mod p)
≡ M (1) k(q-1) (mod p)
≡ M               (mod p) 

(trivially true if M ≡ 0) 

■ Med ≡ M               (mod q)

Finally.

■ Med ≡ M (mod pq)

Fermat’s Little Theorem

if p is prime, then for all a ≠ 0 
ap-1 ≡ 1 (mod p)

Chinese Remainder Theorem

if p, q prime then for all x, a
x ≡ a (mod pq)   ⇔
x ≡ a (mod p), x ≡ a (mod q)

n


