Lecture P9: WAR Card Game

Overview

Write a program to play the card game "War."

Goals.
. Practice with linked lists and pointers.
. Appreciate the central role played by data structures.
. Learn how to design a "large" program.
. Learn how to read a "large" program.

WAR Demo

Rules of the game.
. Each player is dealt half of the cards.
. Each player plays top card.
- whichever is higher captures both cards
—in event of tie, WAR
. Repeat until one player has all the cards.

WAR demo. E

Before You Write Any Code

Determine a high-level view of the code you plan to write.

Break it up into manageable pieces.
. Create the deck of cards.

. Shuffle the cards.

. Deal the cards.

. Play the game.

Determine how you will represent the data.
. The cards.

. The deck.

. The hands.

Represent 52 cards using an integer between 0 and 51.

Clubs Diamonds Hearts Spades
Card # Card # Card # Card #
2% 2¢ 13 2v | 26 24 | 39

Representing The Cards

0
3& 1 3¢ 14 3v 27 34 40
44 2 44 15 49 28 4.4 41
K& [11 Ke 24 Ke | 37 K& 50
As | 12 Ae 25 Av | 38 Ae 51

Representing The Cards

Represent 52 cards using an integer between 0 and 51.
. Warif (rank(cl) == rank(c2))

& 0

Card type

typedef int Card;
int rank(Card c) {

return ¢ % 13;
}

int suit(Card c) {
return (¢ %52) / 13;
}

| 1
¢ % 52 to allow for
multiple deck war

==

LREICE

=t o

Card type

voi

Representing The Cards

d showcard(Card c) {

switch (rank(c)) {
case O0: printf("Deuce of ");
case 1: printf("Three of ");

case 12: printf("Ace of ");
}

switch (suit(c)) {
case 0: printf("C ubs\n");
case 1: printf ("D anpbnds\n");
case 2: printf("Hearts\n");
case 3: printf("Spades\n");

br eak;
br eak;

br eak;

br eak;
br eak;
br eak;
br eak;

war.c (test code)

#i ncl ude <stdi o. h>
#def i ne DECKSI ZE 52

}

typedef int Card;

int rank(Card c) {...}

int suit(Cardc) {...}
voi d showCard(Card c) {...}

int main(void) {

Card c;

for (c = ¢ < DECKSI ZE; c++)
showCar d(c);

return O;

Testing the Code

% a. out

Deuce of O ubs
Three of C ubs

Four of O ubs
Fi ve of C ubs
Si x of C ubs

Seven of d ubs

Ki ng of Spades
Ace of Spades

% gcc war. c

Representing the Deck and Hands

Use a linked list to represent the deck and hands.

represent a pile of cards

Is:tandardlinked ’\::> typedef struct node* Iink;
ist structure struct node {

Card card;
l'i nk next;

I

maintain pointer to first .
PP > 1ink Atop, Abot;
and last card in A’s pile . ’ '
P link Btop, Bbot;

At op Abot

- Wery ey Wy -y

Representing the Deck and Hands

Use a linked list to represent the deck and hands.

Why use linked lists?
. Draw cards from the top, captured cards go to bottom.
- Need direct access to top and bottom cards.
- No need for direct access to middle cards.
. Gain practice with linked lists.

At op Abot

- Wery ey Wy -y

Showing a Hand

Use printf () method for debugging.

. May need to build supplemental functions to print out contents of
data structures.

. Print out contents of player’s hand.

showPile()

voi d showPile(link pile) {

- l'ink x;
s_tandard linked L for (x = pile; x !'= NULL; x = x->next)
list traversal]

showCar d(x- >card) ;
return;

Showing a Hand

Use printf () method for debugging.

. May need to build supplemental functions to print out contents of
data structures.

. Print out contents of player’'s hand.
. Count number of cards in player's hand.

countPile()

int countPile(link pile) {
l'ink x;

= 0;

3 || int cnt
standard linked :> for (x = pile; x !'= NULL; x = x->next)

list traversal []

cnt ++;
return cnt;

Creating the Deck

Goal: create a 52 card deck.
. Need to dynamically allocate memory.

. Good programming practice to write helper function to allocate
memory and initialize it.

NEWnNode()

needed for #incl ude <stdlib. h>
mal | oc()

i nk NEwhode(Card card, link next) {
link x;

| allocate memory —>> x = malloc(sizeof *x);

if (x == NULL) {
printf("Error.\n");
exit (EXI T_FAI LURE) ;

| malloc() failed

| initialize node >card = card:

}

X->next = next;
> - -
}

Creating the Deck

Goal: create a 52 card deck.
. Need to dynamically allocate memory.

l'ink makePile(int N) {
Card c;
link x, vy, pile;

start deck with Ot card > x = pile = NEWiode(0, NULL);

[W

for (c =1, ¢ <N c++) {
y = NEWhode(c, NULL);
X->next = y;
X =Y,

}

return link to first L~ return pile;
node of pile y—lﬁ '

add next card to L
bottom of pile [™

Testing the Code

% gcc war. c
% a. out

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

#def i ne DECKSI ZE 52
Deuce of C ubs

Three of C ubs
Four of C ubs
Five of O ubs
Si x of d ubs

Seven of d ubs

typedef int Card;
[rank(), suit(), showCard()]

typedef struct node* link ...

i nk NEWhode(Card card, link next) {...}
link makePile(int N) {...}

link showPile(link pile) {...}

Ki ng of Spades
Ace of Spades

int main(void) {
l'i nk deck;
deck = nmkePi | e(DECKSI ZE) ;
showPi | e(deck);
return O;

}

Dealing

Deal cards one at a time. E

. Input: deck of cards (linked list).

. Creates: two new linked lists for players A and B.
- global variable Atop, Btop point to first node
- global variable Abot, Bbot point to last node

. Does not create (malloc) new nodes.

el B B By B

Dealing Code

voi d deal (link d) {

handle first card Atop = d; Abot = d; d = d->next;
of each pile Btop = d; Bbot = d; d = d->next;
while (d !'= NULL) {
assumes deck Abot - >next = d; Abot = d; d = d->next;
has even # cards Bbot - >next = d; Bbot = d; d = d->next;

}

mark end of piles Abot - >next = NULL; Bbot->next = NULL;

Testing the Code

as before % gcc war. c
% a. out
link Atop, Abot, Btop, Bbot;
PLAYER A
void deal (link d) { ...} Deuce of d ubs
Four of C ubs
int main(void) { Six of O ubs
I'ink deck; S
deck = makePi | e(DECKSI ZE) ; King of Spades
deal (deck);
printf("PLAYER A\ n"); PLAYER B

Three of C ubs
Fi ve of C ubs
Seven of C ubs

showPi | e(At op) ;

printf("\nPLAYER B\n");

showpi | e(Bt op) ;

return O; B
} Ace of Spades

Shuffling the Deck

Shuffle the deck.
. Disassemble linked list elements and put into an array.
. Shuffle array elements (using algorithm from Lecture P3).
. Reassemble linked list from shuffled array.

3R IRE Ry WIRE IR IR IR AR RNy

Array index 0

Value 2% | 3% |48 | 5& | 6% | /% | 8% | 9&

Array index 0
Value 4% | 6% | O% | 2% | 8% | 7% | 58 | 38

(o [T 50 [+ [0 [7o [3-o[5 -+ e [

Shuffling the Deck

shuffle pile of cards

link shufflepile(link pile) {
int i, n;
link x;
I'i nk a[DECKSI ZE] ;

for (x = pile, n =0; x !'= NULL; X = x->next, n++)
a[n] = x;

shuffle(a, n); <# shuffle array elements
for (i =0; i <n - 1; i++)
<::: reassemble linked list

a[i]->next = a[i+1];
a[n- 1] - >next = NULL;

return a[0];

Testing the Code

Playing

"Peace" (war with no wars).
. Starting point for implementation.
. Assume player B wins if a tie.

What should happen?
. Intuitively, B has an advantage, so should usually win.

as before % gcc war.c
% a. out
int random nteger(int n) { }
voi d shufflePile(link pile) { ...} PLAYER A~
Ei ght of Di anponds
int main(void) { Ten of Hearts
link deck: Four of C ubs
deck = nakePi | e(DECKSI ZE) ; Coe
deck = shufflePile(deck); Nine of Spades
deal (deck);
printf("PLAYER A\ n"); PLAYER B
showpi | e(At op) ; Jack of Hearts
printf("\nPLAYER B\n"); Jack of O ubs
showpi | e(Bt op) ; Four of Di amonds
et Ten of O ubs
}
Playing
At op Abot
Bt op Bbot

24 Jv Q

2 o]

A wins if (Aval > Bval)

74

NULL‘

Aval
Bval

r ank(At op- >card) ;
r ank(Bt op- >card) ;

Playing
At op Abot
Bt op Bbot
B B BB
Tt op, Thbot delimit pile to be Ttop = Atop;
awarded to winner (prize). Thot = Bt op;

Playing

Tt op

At op l

Abot

Bt op Bbot
Thot
Reset top of each player’s Atop = Atop->next;
piles. Bt op = Bt op- >next ;
Playing
Tt op
At op Abot
Bbot
E—P 7 NULL‘

Cleaning up the picture

Playing
Ttop
At op Abot
ey gy e e gy IR
Bt op Bbot
7 Beery Wpy By W
Thot
Link prize pile together. Tt op- >next = Thot ;
Thot - >next = NULL;
Playing
At op Abot
B e B
Bt op Bbot
v o [+ i
Tt op Tbot

!

K & 2¢ NUL

Abot - >next = Tt op;

Award prize to A. Abot = Tbot ;

)

At op

Peace Code

war.c

void play (void) {
int Aval, Bval;
link Ttop, Tbot;

Until aplayer L_N while ((Atop != NULL) && (Btop != NULL)) {

loses | Aval = rank(Atop->card);

Bval = rank(Btop->card);
Ttop = Atop; Thot = Btop;
Atop = Atop->next; Btop = Btop->next;
Tt op- >next = Thot; Tbot->next = NULL;
. L
Awins —=> if (Aval > Bval) {
SR if (Atop == NULL) Atop = Ttop;
el se Abot->next = Ttop;
Abot = Thot;
. L
Bwins = else {
S if (Btop == NULL) Btop = Ttop;
el se Bbot->next = Ttop;
Bbot = Tbot;
}
}

Game Never Ends

"Peace" (war with no wars).
. Starting point for implementation.
. Assume player B wins if a tie.

What should happen?
Intuitively, B has an advantage, so should usually win.

What actually happens?
e

’59 ._‘_434- ._‘_"NULL‘
’2-1- ._‘_p‘4é ._‘_"NULL‘

One Bit of Uncertainty

What actually happens?
. Game "never" ends for many (almost all) deals.

Proper use of randomization is vital in simulation applications.
Randomly exchange two cards in battle when picked up.

Ten Typical Games

Bwns in 446 steps.

if (random nteger(2) == 1) Awins in 404 steps.
Ttop = Atop, Thot = Btop; Bwinsin 330 steps.
el se B wins in 1088 steps.
Ttop = Btop, Thot = Atop; Bwins in 566 steps.
Bwins in 430 steps.

exchange cards randonly A wins in 208 steps.
Bwns in 214 steps.

Bwns in 630 steps.

Bwns in 170 steps.

Add Code for War

Add code to handle ties.
Insertin pl ay(voi d) before i f (Aval > Bval)

whi | e noti f to while (Aval == Bval) {
handle multiple wars for (i =0; i < WARSIZE; i++) {

if (Atop == NULL)
return;
Tbot - >next = Atop; Thot = Atop;
At op = Atop->next;
}

A’s war card > Aval =r ank(Tbot - >car d) 0

for (i =0; i < WARSIZE; i++) {

if (Btop == NULL)
add WARSI ZE cards return:
to temporary pile T Tbot - >next = Btop; Thot = Btop;

Bt op = Bt op->next;

}
B’s war card :::> Bval = rank(Tbot->card);

}
Thbot - >next = NULL;

Answer

Q. "So how long does it take?"
A. "About 10 times through deck (254 battles)."

Q. "How do you know?"
A. "l played a million games. . .."

Ten Typical Games

Bwins in 60 steps.
A wins in 101 steps.
B wins in 268 steps.
A wins in 218 steps.
B wins in 253 steps.
A wins in 202 steps.
B wins in 229 steps.
Awns in 78 steps.
Bwins in 84 steps.
A wins in 654 steps.

Answer

Q. "That sounds like fun."
A. "Let’s try having bigger battles. . . ."

Average # of Steps in War

800 -
600
400 +
200

Steps

o 1 2 3 4 5 6 7 8 9
War Size

Problems With Simulation

Doesn't precisely mirror game.
. People pick up cards differently.
. "Sort-of" shuffle prize pile after war?
. Separate hand and pile.
- could have war as pile runs out

. Our shuffling produces perfectly random deck
(up to "randomness" of rand() library function).

Tradeoff
. Convenience for implementation.
. Fidelity to real game.
. Such tradeoffs are typical in simulation.
. Try to identify which details matter.

War Using Queue ADT

Use first class queue ADT. Why queue?
. Always draw cards from top, return captured cards to bottom.

peace.c

voi d play(Queue A Queue B) {
Card Acard, Bcard;
Queue T = QUEUEI nit();

while (!QUEUE sempty(A) && ! QUEUEI senpty(B)) {
Acard = QUEUEget (A); Bcard = QUEUEget (B);
QUEUEput (T, Acard); QUEUEput(T, Bcard);
if (rank(Acard) > rank(Bcard))
whil e (! QUEUEI senpty(T))
QUEUEput (A, QUEUEget (T));
el se
while (! QUEUEenpty(T))
QUEUEput (B, QUEUEget (T));

War Using Queue ADT

Use first class queue ADT. Why queue?
e

Advantages:
. Simplifies code.
. Avoids details of linked lists.

Disadvantage:
. Adds detail of interface.

Summary

How to build a "large" program?

. Use top-down design.

. Break into small, manageable pieces. Makes code:
- easier to understand
- easier to debug
- easier to change later on

. Debug each piece as you write it.

. Good algorithmic design starts with judicious choice of data
structures.

How to work with linked lists?
. Draw pictures to read and write pointer code.

