
Lecture P6:  Recursion

Start

Goal

3

Overview

What is recursion?

■ When one function calls ITSELF directly or indirectly.

Why learn recursion?

■ New mode of thinking.

■ Powerful programming tool to solve a problem
by breaking it up into one (or more) smaller
problems of similar structure. 

! divide-and-conquer

■ Many computations are naturally self-referential.
– a Unix directory contains files and other directories
– Euclid’s gcd algorithm
– linked lists
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Overview

How does recursion work? 
! Just like any other function call.

How does a function call work?

■ A function lives in a local environment:
– values of local variables
– which statement the computer is currently executing

■ When f() calls g(), the system
– saves local environment of f
– sets value of parameters in g
– jumps to first instruction of g, and executes that function
– returns from g, passing return value to f
– restores local environment of f
– resumes execution in f just after the function call to g
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Implementing Functions

How does the compiler implement functions? 
! With a STACK.

Return from functions in last-in first-out (LIFO) order.

■ FUNCTION CALL:  push local environment onto stack.

■ RETURN:  pop from stack and restore local environment.
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A Simple Example

Goal:  function to compute sum(n) = 0 + 1 + 2 + . . . + n-1 + n.

■ Simple ITERATIVE solution.

int sum(int n) {
int i, s = 0;
for (i = 0; i <= n; i++)

s += i;
return s;

}

iterative sum 1

int sum(int n) {
int s = n;
while (n > 0) {

n--;    
s += n;

}
return s;

}

iterative sum 2

Note that changing the variable 
n in sum does not change the 
value in the calling function.

7

A Simple Example

Goal:  function to compute sum(n) = 0 + 1 + 2 + . . . + n-1 + n.

■ Simple ITERATIVE solution.

■ Can also express using SELF-REFERENCE.
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int sum(int n) {
if (0 == n)

return 0;
return n + sum(n-1);

}

recursive sum

base case

reduction step

sum(n-1)
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A Simple Example

Goal:  function to compute sum(n) = 0 + 1 + 2 + . . . + n-1 + n.

■ Simple ITERATIVE solution.

■ Can also express using SELF-REFERENCE.

This is just a stupid example to illustrate recursion.

■ Don’t even need iteration, let alone recursion.

■ 0 + 1 + 2 + . . . + n = n(n+1) / 2

int sum(int n) {
return (n * (n+1)) / 2;

}

better sum
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A Bad Recursive Function

BASE CASE is special input for which the answer is trivial. 

■ Won’t "bottom-out" of recursion without a base case.

■ Analog of infinite loops with for and while loops.

void mystery1(int n) {
printf("%d\n", n);
if (n % 2 == 0)

mystery1(n/2);
else

mystery1(3*n + 1);
}

mystery1(n)

Is n even?

no base case
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A Bad Recursive Function

BASE CASE is special input for which the answer is trivial. 

REDUCTION STEP makes input converge to base case.

■ Unknown whether program terminates for all positive integers n.

■ Stay tuned for Halting Problem in Lecture T4.

void mystery2(int n) {
printf("%d\n", n);
if (n <= 1)

return;
else if (n % 2 == 0)

mystery2(n/2);
else

mystery2(3*n + 1);
}

mystery2(n)

base case

anti-reduction step

reduction step
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Greatest Common Divisor

Find largest integer d that evenly divides into m and n.
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Euclid (300 BC)

gcd(1440, 408) = gcd(408, 216)
= gcd(216, 192)
= gcd(192, 24)
= gcd(24, 0)
= 24.

1440 =  25 × 32 × 51

408 =  23 × 31 × 171
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Greatest Common Divisor

Find largest integer d that evenly divides into m and n.

int gcd(int m, int n) {
if (0 == n)

return m;
else

return gcd(n, m % n);
}

gcd(m, n)

base case

reduction step
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Number Conversion

To print binary representation of integer N:

■ Stop if N = 0.

■ Write ’1’ if N is odd; ’0’ if n is even.

■ Move pencil one position to left.

■ Print binary representation of  N / 2.
(integer division)

Easiest way to compute by hand.

■ Corresponds directly with a recursive program.

43            1
21           11
10          011
5         1011
2        01011
1       101011
0    

Check:  43  =  1 × 25 + 0 × 14 +  1 × 23  +  0 × 22 +  1 × 21  +  1 × 20

=    32     +      0       + 8     +      0      +     2     + 1
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Recursive Number Conversion

Computer naturally prints from left to right.

■ So we need to first convert N / 2.

■ Then write ’0’ or ’1’.

Proof of correctness:

N = 2 * (N / 2) + (N % 2)

void convert(int N) {
if (N == 0)

return;
convert(N / 2);
printf("%d", N % 2);

}

convert( )

1 if N is odd; 0 if N is even

convert(43)
convert(21)

convert(10)
convert(5)
convert(2)

convert(1)
convert(0)
printf("1")

printf("0")
printf("1")

printf("0")
printf("1")

printf("1")

function calls

Indentation level pairs 
statements belonging 
to same "invocation"

% gcc convert.c
% a.out
43
101011

Unix
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Recursive Number Conversion

Computer naturally prints from left to right.

■ So we need to first convert N / 2.

■ Then write ’0’ or ’1’.

Proof of correctness:

N = 2 * (N / 2) + (N % 2)

Convert to any base b ≤ 10.
! Change ’2’ to ’b’ everywhere in code.

■ Exercise:  extend to handle hexadecimal (base 16).

void convert(int N) {
if (N == 0)

return;
convert(N / 2);
printf("%d", N % 2);

}

convert( )

1 if N is odd; 0 if N is even
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Root Finding
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Given a function, find a root, i.e., a value x such that f(x) = 0.

■ f(x) = x2 - x - 1

■ is a root.

Assume f is continuous and l, r satisfy  f(l) < 0.0 and f(r) > 0.0.

1.61803...
2

51 =+=φ
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Root Finding

Reduction step:

■ Maintain interval [l, r] such that f(l) < 0, f(r) > 0.

■ Compute midpoint m = (l + r) / 2.

■ If f(m) < 0 then run algorithm recursively on interval is [m, r].

■ If f(m) > 0 then run algorithm recursively on interval is [l, m].

Progress achieved at each step.

■ Size of interval is cut in half.

Base case (when to stop):
■ Ideally when (0.0 == f(m)), but this may never happen!

– root may be irrational
– machine precision issues

■ Stop when (r - l) is sufficiently small.
– guarantees m is sufficiently close to root
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Root Finding

Given a function, find a root, i.e., a value x such that f(x) = 0.

#define EPSILON 0.000001

double f (double x) {
return x*x - x - 1;

}

double bisect (double left, double right) {
double mid = (left + right) / 2;
if (right - left < EPSILON || 0.0 == f(mid))

return mid;
if (f(mid) < 0.0)

return bisect(mid, right);
return bisect(left, mid);

}  

recursive bisection function
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Root Finding

Given a function, find a root, i.e., a value x such that f(x) = 0.

■ Fundamental problem in mathematics, engineering.
– to find minimum of a (differentiable) function, need to identify

where derivative is zero.

■ Faster methods if function is sufficiently smooth.
– Newton’s method.
– Steepest descent.
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Possible Pitfalls With Recursion

Is recursion fast?

■ Yes.  We produced remarkably efficient program for 
exponentiation.

■ No.  Can easily write remarkably inefficient programs.
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Fibonacci numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34,  . . .

It takes a really 
long time to 

compute F(20).

int F(int n) {
if (0 == n || 1 == n)

return n;
else

return F(n-1) + F(n-2);
}

bad Fibonacci function
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Possible Pitfalls With Recursion

F(10)

F(9) F(8)

F(8)

F(7) F(6)

F(7)

F(6) F(5)

F(6)

F(5) F(4)

F(7)

F(6) F(5)

Requires F(n) recursive calls to compute F(n).

F(8) is recomputed 2 times.

F(7) is recomputed 3 times.

F(6) is recomputed 5 times.

F(5) is recomputed 8 times.

...

F(1) is recomputed 12,555 times.

int F(int n) {
if (0 == n || 1 == n)

return n;
else

return F(n-1) + F(n-2);
}

bad Fibonacci function



22

Possible Pitfalls With Recursion

Recursion can take a long time if it needs to repeatedly recompute 
intermediate results.

■ DYNAMIC PROGRAMMING solution:  save away intermediate 
results in a table. 

int knownF[1000] = {0};

int F(int n) {
if (knownF[n] != 0)

return knownF[n];
else if (0 == n || 1 == n)

return n;
knownF[n] = F(n-1) + F(n-2);
return knownF[n];

}

Fibonacci using dynamic programming

Uses only 2n recursive 
calls to compute F(n).

Stores ith Fibonacci 
number in ith element. 
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Recursion vs. Iteration

Fact 1.  Any recursive function can be written with iteration.

■ Compiler implements recursion with stack.

■ Can avoid recursion by explicitly maintaining a stack. 

Fact 2.  Any iterative function can be written with recursion.

Should I use iteration or recursion?

■ Consider ease of implementation.

■ Consider time/space efficiency.
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Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.

■ Only one disc may be moved at a time.

■ A disc can be placed either on empty peg or on top of a larger disc.
. 

Towers of Hanoi demo

Start Goal

Edouard Lucas (1883)
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Towers of Hanoi:  Recursive Solution

Move N-1 discs 1 peg to right. Move largest disc 1 peg to left.

Move N-1 discs 1 peg to right.
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Towers of Hanoi:  Recursive Solution

#include <stdio.h>
void hanoi(int n, char from, char to) {

char temp;
if (n == 0)

return;
temp = getOtherPeg(from, to);
hanoi(n-1, from, temp);
printf("Move disc %d from %c to %c.\n", n, from, to);
hanoi(n-1, temp, to);

}

int main(void) {
hanoi(4, ’A’, ’C’);
return 0;

}

hanoi.c

Solve 4 disc 
problem
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Towers of Hanoi:  Recursive Solution

char getOtherPeg(char x, char y) {
if (x == ’A’ && y == ’B’) || (x == ’B’ && y == ’A’)

return ’C’;
if (x == ’A’ && y == ’C’) || (x == ’C’ && y == ’A’)

return ’B’;
return ’A’;

}

hanoi.c
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Towers of Hanoi:  Recursive Solution

int main(void) {
HanoiLeft(4);
return 0;

}

hanoi.c

Solve 4 disc 
problem

% gcc hanoi.c
% a.out

Move disc 1 from A to B.
Move disc 2 from A to C.
Move disc 1 from B to C.
Move disc 3 from A to B.
Move disc 1 from C to B.
Move disc 2 from C to B.
Move disc 1 from B to B.
Move disc 4 from A to C.
Move disc 1 from B to C.
Move disc 2 from B to C.
Move disc 1 from C to C.
Move disc 3 from B to C.
Move disc 1 from C to B.
Move disc 2 from C to C.
Move disc 1 from B to C.

Unix
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Towers of Hanoi

Is world going to end (according to legend)?

■ Monks have to solve problem with N = 40 discs.

■ Computer algorithm should help.
! Not really!  Takes 2N - 1 steps.

(assuming rate of 1 disc per second, will take 348 centuries)

Better understanding of recursive algorithm supplies non-recursive 
solution!

■ Alternate between two moves:
! Move smallest disc 1 peg to right (left) if N is even (odd).
! Make only legal move not involving smallest disc.

■ See Sedgewick  5.2.
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Summary

How does recursion work?

■ Just like any other function call.

How does a function call work?

■ Save away local environment using a stack.

Trace the executing of a recursive program.

■ Use pictures.

Write simple recursive programs. 

■ Base case.

■ Reduction step.


