Lecture P6:

Recursion

Overview
What is recursion?

When one function calls ITSELF directly or indirectly
Why learn recursion?
. New mode of thinking.

Powerful programming tool to solve a problem

by breaking it up into one (or more) smaller
problems of similar structure.
e

- Euclid’s gcd algorithm

Overview
How does recursion work?
rd

How does a function call work?

A function lives in a local environment:
- values of local variables

il

When f () calls g(), the system

- which statement the computer is currently executing
- saves local environment of f

- sets value of parameters in g

- jumps to first instruction of g, and executes that function
- returns from g, passing return value to f
- restores local environment of f

- resumes execution in f just after the function call to g

Many computations are naturally self-referential.

—a Unix directory contains files and other directories
- linked lists

Implementing Functions
e

Return from functions in last-in first-out (LIFO) order.

How does the compiler implement functions?

FUNCTION CALL: push local environment onto stack.

RETURN: pop from stack and restore local environment.

A Simple Example
Goal: function to compute sum(n)=0+1+2+...+n-1+n.

. Simple ITERATIVE solution.

iterative sum 1
nt sum(int n) {

int sum(int n) {

int i, s =0; int s =n;
for (i =0; i <=n; i++) while (n > 0) {
S+=i; n--:
return s, S += n;
} }
return s;

}

Note that changing the variable
n in sumdoes not change the
value in the calling function.

A Simple Example

Goal: function to compute sum(n)=0+1+2+...+n-1+n.
A -

_

~—

: . sum(n-1)
. Simple ITERATIVE solution.

. Can also express using SELF-REFERENCE.

0 if n=0
sum(n) = B) === basecase
On+sum(n-1) otherwise | <(==== reduction step

converges to
base case

int sum(int n) {

if (0 ==n) <=7 Dbasecase
return O;

return n + sum(n-1); | <= reduction step

}

A Simple Example
Goal: function to compute sum(n)=0+1+2+...+n-1+n.

. Simple ITERATIVE solution.
. Can also express using SELF-REFERENCE.

This is just a stupid example to illustrate recursion.
Don't even need iteration, let alone recursion.
. 0+1+2+...+n=n(n+l)/2

int sum(int n) {
return (n * (n+l)) / 2;

}

A Bad Recursive Function

BASE CASE is special input for which the answer is trivial.
. Won't "bottom-out" of recursion without a base case.
. Analog of infinite loops with for and while loops.

voi d nysteryl(int n) {
printf("%\n", n);
Is n even? ::: if (n %2 ==0)
nysteryl(n/2);
el se
mysteryl(3*n + 1);

no base case

A Bad Recursive Function

BASE CASE is special input for which the answer is trivial.

REDUCTION STEP makes input converge to base case.
. Unknown whether program terminates for all positive integers n.
. Stay tuned for Halting Problem in Lecture T4.

mystery2(n)

void nystery2(int n) {
printf("%\n", n);
if (n<=1) <=== basecase
return;
else if (n %2 == 0) <=== reduction step
nystery2(n/2);
el se

nmystery2(3*n + 1); <:F anti-reduction step

Greatest Common Divisor

Find largest integer d that evenly divides into m and n.

am if n=0 <= basecase
gcd(m, n) = . .
fged(n, m % n) otherwise | <——= reduction step

converges to
base case

gcd(1440, 408) =gcd(408, 216)
=gcd(216, 192)
=gcd(192, 24)
=gcd(24,0)
=24.

1440 = 25x32x 51
408 = 23x 31 x 17!

Euclid (300 BC)

Greatest Common Divisor

Find largest integer d that evenly divides into m and n.

am if n=0 <= basecase
ged(m, n) =0 . .
fged(n, m % n) otherwise | <= reduction step

converges to
base case

int gcd(int m int n) {

if (0 == n)
return m <== basecase
el se

return gcd(n, m%n); reduction step
}

Number Conversion

To print binary representation of integer N: 43 1
. Stopif N=0. 21 11
10 011

. Write '1'if Nis odd; '0’"if n is even. 5 1011
. Move pencil one position to left. 01011

2
. Print binary representation of N/ 2. 1 101011
(integer division) 0

Check: 43 1x25 + 0x14 + 1x23+ 0x22 + 1x21+ 1x20

32 + 0 + 8 + 0 + 2 + 1

Easiest way to compute by hand.
. Corresponds directly with arecursive program.

Recursive Number Conversion

Computer naturally prints from left to right.

. So we need to first convert N/ 2.

. Then write '0’ or '1".

function calls

convert (43)
convert (21)
convert (10)
convert (5)
convert (2)
convert (1)
convert (0)
printf("1")
printf("0")
printf("1")
printf("0")
printf("1")
printf("1")

voi d convert(int N) {

if (N==0)
return;
convert (N / 2);
printf("%l", N % 2);
}

it

odd; 0 if N is even

% gcc convert.c
% a. out

43

101011

Indentation level pairs
statements belonging
to same "invocation"

Recursive Number Conversion

Computer naturally prints from left to right.
. So we need to first convert N/ 2.

. Then write '0’ or '1".

voi d convert(int N) {
if (N==0)
return;
convert (N / 2);
printf("%l", N % 2);

it

Proof of correctness:
N=2*(N/2)+(N%2)

}

1if Nis odd; Oif N is even

Convert to any base b < 10.
e

. Exercise: extend to handle hexadecimal (base 16).

Root Finding

Given a function, find aroot, i.e., a value x such that f(x) = 0.

L fx)=x2-x-1
_1+45 _
2

= 1.61803... is aroot.

Assume f is continuous and I, r satisfy f(I) <0.0 and f(r) > 0.0.

2 -
1.5 4
1 4
0.5 +
0

=1

Root Finding

Reduction step:

. Maintain interval [l, r] such that f(I) <0, f(r) > 0.

. Compute midpointm = (I +r)/2.

. If f(m) < 0 then run algorithm recursively on interval is [m, r].
. If f(m) > 0 then run algorithm recursively on interval is [l, m].

Progress achieved at each step.
. Size of interval is cut in half.

Base case (when to stop):
. Ideally when (0.0 == f(m), but this may never happen!
- root may be irrational
- machine precision issues
. Stopwhen (r - 1) is sufficiently small.
- guarantees mis sufficiently close to root

Root Finding

Given a function, find aroot, i.e., a value x such that f(x) = 0.

recursive bisection function

#defi ne EPSI LON 0. 000001

doubl e f (double x) {
return x*x - x - 1;
}

doubl e bisect (double left, double right) {
double mid = (left + right) / 2;
if (right - left < EPSILON || 0.0 == f(mid))
return md;
if (f(md) <0.0)
return bisect(md, right);
return bisect(left, md);

Root Finding
Given a function, find aroot, i.e., a value x such that f(x) = 0.

. Fundamental problem in mathematics, engineering.

- to find minimum of a (differentiable) function, need to identify
where derivative is zero.

. Faster methods if function is sufficiently smooth.
- Newton’s method.
- Steepest descent.

Possible Pitfalls With Recursion

Is recursion fast?

. Yes. We produced remarkably efficient program for
exponentiation.

. No. Can easily write remarkably inefficient programs.

Fibonacci numbers: EO if n=0
F,=m if n=1

0,1,1,23,5,8,13,21, 34, ...

He,-1+ Fp-p otherwise

It takes a really
long time to
compute F(20).

bad Fibonacci function

O int F(int n) {
O if (0=="n]|| 1 ==n)
return n;
el se

return F(n-1) + F(n-2);

Possible Pitfalls With Recursion

F(8) is recomputed 2 times. F(10)

F(7) is recomputed 3 times. FO — T F@)

F(6) is recomputed 5 times. F(s)/ \F(7) |:(7)/ \,:(5)
VRN VRN VRN VRN

F(5) is recomputed 8 times.
F(7) F(6) F(®) F(B) F(6) F(5) F(5) F4)

/N /N /N /N /N /N /N /N
F(1) is recomputed 12,555 times.

Requires F(n) recursive calls to compute F(n).

bad Fibonacci function

int F(int n) {
if (0O=n]||] 1==n)
return n;
el se
return F(n-1) + F(n-2);

Possible Pitfalls With Recursion

Recursion can take a long time if it needs to repeatedly recompute
intermediate results.

DYNAMIC PROGRAMMING solution: save away intermediate
results in a table.

Fibonacci using dynamic programming

int knownF[1000] = {0}; Stores ith Fibonacci
' number in ith element.

int F(int n) {
if (knownF[n] !'= 0)
return knownF[n];
else if (0 ==n]| 1 ==n)
return n;
knownF[n] = F(n-1) + F(n-2);
return knownF[n];

Uses only 2n recursive
calls to compute F(n).

}

Recursion vs. Iteration

Fact 1. Any recursive function can be written with iteration.
. Compiler implements recursion with stack.
. Can avoid recursion by explicitly maintaining a stack.

Fact 2. Any iterative function can be written with recursion.
Should | use iteration or recursion?

. Consider ease of implementation.
. Consider time/space efficiency.

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.
. Only one disc may be moved at a time.

. Adisc can be placed either on empty peg or on top of a larger disc.

| |

- —
A —
— —
— -
— P—
e —
- E—

Start Goal

Towers of Hanoi demo E

v

Edouard Lucas (1883)

Towers of Hanoi: Recursive Solution

Move N-1 discs 1 peg to right. Move largest disc 1 peg to left.

L

—
o
—
-
m———
——
E—

Move N-1 discs 1 peg to right.

Towers of Hanoi: Recursive Solution

hanoi.c

VOi

}

int

#i ncl ude <stdi o. h>

d hanoi (int n, char from char to) {
char tenp;
if (n==0)
return;
temp = get & herPeg(from to);
hanoi (n-1, from tenp);
printf("Mve disc %d from% to %.\n", n, from to);

hanoi (n-1, tenp, to);
Solve 4 disc
problem

mai n(voi d) {
hanoi (4, "A, 'C);
return O;

Towers of Hanoi: Recursive Solution

hanoi.c

char get &t herPeg(char x, char y) {
if (x ="A & y =="'B) || (x =="'B &&y == "A)
return ' C;
if (x ="A & y ="C) || (x =="C && Yy =="A)
return 'B;
return A ;
}

Towers of Hanoi: Recursive Solution

% gcc hanoi . c
% a. out

Move disc 1 fromA to B.
Move disc 2 fromA to C
Move disc 1 fromB to C
i nt ; i d Move disc 3 fromA to B.
Inl—laﬁ: Eé}’?'ﬂ;_{ Solve 4 disc Mbve disc 1 fromC to B.
! roblem Move disc 2 fromC to B.
return 0; Move disc 1 fromB to B.
} Move disc 4 fromA to C
Move disc 1 fromB to C
Move disc 2 fromB to C
Move disc 1 fromCto C
Move disc 3 fromB to C
Move disc 1 fromC to B.
Move disc 2 fromCto C
Move disc 1 fromB to C

Towers of Hanoi

Is world going to end (according to legend)?
. Monks have to solve problem with N = 40 discs.
. Computer algorithm should help.

e

Better understanding of recursive algorithm supplies non-recursive
solution!

. Alternate between two moves:
rd
rd

. See Sedgewick 5.2.

Summary

How does recursion work?
Just like any other function call.

How does a function call work?
Save away local environment using a stack.

Trace the executing of a recursive program.
Use pictures.

Write simple recursive programs.
Base case.
Reduction step.

