Lecture P6: Recursion

Overview

How does recursion work?

How does a function call work?
. A function lives in a local environment:

- values of local variables
- which statement the computer is currently executing
- When $f()$ calls $g()$, the system
- saves local environment of f
- sets value of parameters in g
- jumps to first instruction of g, and executes that function
- returns from g, passing return value to f
- restores local environment of f
- resumes execution in f just after the function call to g

Overview

What is recursion?

- When one function calls ITSELF directly or indirectly.

Why learn recursion?

- New mode of thinking.
- Powerful programming tool to solve a problem by breaking it up into one (or more) smaller problems of similar structure.
∞
- Many computations are naturally self-referential.
- a Unix directory contains files and other directories
- Euclid's gcd algorithm
- linked lists

Implementing Functions

How does the compiler implement functions?

Return from functions in last-in first-out (LIFO) order.
. FUNCTION CALL: push local environment onto stack.

- RETURN: pop from stack and restore local environment.

A Simple Example

Goal: function to compute $\operatorname{sum}(n)=0+1+2+\ldots+n-1+n$.
. Simple ITERATIVE solution.

```
iterative sum 1
int sum(int n)
    int i, s = 0;
    for (i = 0; i <= n; i++)
        s += i;
    return s;
}
```

iterative sum 2 int sum(int n) $\{$ int $s=n$;
while ($n>0$) $\{$
n--;
s $+=\mathrm{n}$;
\}
return s;
\}

Note that changing the variable n in sum does not change the value in the calling function.

A Simple Example

Goal: function to compute $\operatorname{sum}(n)=\underbrace{0+1+2+\ldots+n-1}_{\operatorname{sum}(n-1)}+n$.
. Simple ITERATIVE solution.

- Can also express using SELF-REFERENCE.

A Bad Recursive Function

BASE CASE is special input for which the answer is trivial.
. Won’t "bottom-out" of recursion without a base case.

- Analog of infinite loops with for and while loops.
. Can also express using SELF-REFERENCE.

This is just a stupid example to illustrate recursion.

- Don't even need iteration, let alone recursion.
- $0+1+2+\ldots+n=n(n+1) / 2$

better sum

int sum(int n) $\{$
return (n * ($\mathrm{n}+1$)) / 2;
\}

A Simple Example

Goal: function to compute $\operatorname{sum}(n)=0+1+2+\ldots+n-1+n$.

- Simple ITERATIVE solution.

A Bad Recursive Function

BASE CASE is special input for which the answer is trivial.
REDUCTION STEP makes input converge to base case.

- Unknown whether program terminates for all positive integers \mathbf{n}.
. Stay tuned for Halting Problem in Lecture T4.

Greatest Common Divisor

Find largest integer d that evenly divides into m and n.

Greatest Common Divisor

Find largest integer d that evenly divides into m and n.
$\operatorname{gcd}(m, n)= \begin{cases}m & \text { if } \boldsymbol{n}=\mathbf{0} \\ \operatorname{gcd}(\boldsymbol{n}, \boldsymbol{m} \% \boldsymbol{n}) & \text { otherwise }\end{cases}$
converges to base case

Number Conversion

To print binary representation of integer N : $43 \quad 1$

- Stop if $\mathbf{N}=\mathbf{0}$. 21
. Write ' $\mathbf{1}$ ' if \mathbf{N} is odd; ' $\mathbf{0}$ ' if \boldsymbol{n} is even. 10
Move pencil one position to left
Print binary representation of N 2 101011 (integer division)


```
Check: }\begin{array}{rl}{43}&{=1\times\mp@subsup{2}{}{5}+0\times\mp@subsup{1}{}{4}+1\times\mp@subsup{2}{}{3}+0\times\mp@subsup{2}{}{2}+1\times\mp@subsup{2}{}{1}+1\times}\\{}&{=32+0+0}
```

Easiest way to compute by hand.
. Corresponds directly with a recursive program.

Recursive Number Conversion

Computer naturally prints from left to right.
. So we need to first convert N / 2.
. Then write ' 0 ' or ' 1 '.
function calls
convert (43)
convert (21)
convert (10)
convert (5)
convert (2)
convert (1) convert (0) printf("1") printf("0") printf("1") printf("0") printf("1") printf("1")
void convert (int N) \{ if ($\mathrm{N}=\mathbf{0}$) return; convert (N / 2); printf("\%d", N \% 2);
\}

Unix	odd; 0 if N is even
\% gcc convert. c $\%$ a . out 43 101011 Indentation level pairs statements belonging to same "invocation"	

Recursive Number Conversion

Computer naturally prints from left to right.
. So we need to first convert N / 2.
. Then write ' 0 ' or ' 1 '.

Proof of correctness:

$$
N=2 \text { * (N / 2) + (N \% 2) }
$$

```
void convert(int N) {
```

 if (\(\mathrm{N}==0\))
 return;
 convert (\(\mathrm{N} / 2\));
 printf("\%d", N \% 2);
 \}

1 if N is odd; $\mathbf{0}$ if N is even

Convert to any base $\mathbf{b} \leq 10$.
. Exercise: extend to handle hexadecimal (base 16).

Root Finding

Reduction step:

- Maintain interval $[I, r]$ such that $f(I)<0, f(r)>0$.
- Compute midpoint $m=(I+r) / 2$.
- If $f(m)<0$ then run algorithm recursively on interval is [$m, r]$.
. If $f(m)>0$ then run algorithm recursively on interval is $[I, m]$.

Progress achieved at each step.
. Size of interval is cut in half.

Base case (when to stop):

- Ideally when ($0.0==\mathrm{f}(\mathrm{m})$), but this may never happen!
- root may be irrational
- machine precision issues
- Stop when ($x-1$) is sufficiently small.
- guarantees m is sufficiently close to root

Root Finding

Given a function, find a root, i.e., a value x such that $f(x)=0$.

recursive bisection function

\}

```
#define EPSILON 0.000001
```

\#define EPSILON 0.000001
double f (double x) {
double f (double x) {
return x*x - x - 1;
return x*x - x - 1;
}
}
double bisect (double left, double right) {
double bisect (double left, double right) {
double mid = (left + right) / 2;
double mid = (left + right) / 2;
if (right - left < EPSILON || 0.0 == f(mid))
if (right - left < EPSILON || 0.0 == f(mid))
return mid;
return mid;
if (f(mid) < 0.0)
if (f(mid) < 0.0)
return bisect(mid, right);
return bisect(mid, right);
return bisect(mid, right)

```
    return bisect(mid, right)
```


Root Finding

Given a function, find a root, i.e., a value x such that $f(x)=0$.
. Fundamental problem in mathematics, engineering.

- to find minimum of a (differentiable) function, need to identify where derivative is zero.
. Faster methods if function is sufficiently smooth.
- Newton's method.
- Steepest descent.

Possible Pitfalls With Recursion

Is recursion fast?

- Yes. We produced remarkably efficient program for exponentiation.
- No. Can easily write remarkably inefficient programs.

Fibonacci numbers:
$0,1,1,2,3,5,8,13,21,34, \ldots$

It takes a really long time to compute $\mathrm{F}(20)$.
bad Fibonacci function

return n;
else
return $F(n-1)+F(n-2) ;$
\}

Possible Pitfalls With Recursion

$F(8)$ is recomputed 2 times.
$F(7)$ is recomputed 3 times.
$F(6)$ is recomputed 5 times.
$F(5)$ is recomputed 8 times. ...

$F(1)$ is recomputed 12,555 times.
Requires $\mathrm{F}(\mathrm{n})$ recursive calls to compute $\mathrm{F}(\mathrm{n})$.

Possible Pitfalls With Recursion

Recursion can take a long time if it needs to repeatedly recompute intermediate results.

- DYNAMIC PROGRAMMING solution: save away intermediate results in a table.

```
Fibonacci using dynamic programming
int knownF[1000] = {0}
int F(int n) {
    if (knownF[n] != 0)
        return knownF[n].
    else if (0 == n || 1 == n)
        return n;
    knownF[n] = F(n-1) + F(n-2);
    return knownF[n];
}
```


Recursion vs. Iteration

Fact 1. Any recursive function can be written with iteration.
. Compiler implements recursion with stack.
. Can avoid recursion by explicitly maintaining a stack.

Fact 2. Any iterative function can be written with recursion.

Should I use iteration or recursion?
. Consider ease of implementation.

- Consider time/space efficiency.

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.

- Only one disc may be moved at a time.
. A disc can be placed either on empty peg or on top of a larger disc.

Start

Goal

Towers of Hanoi demo D

Towers of Hanoi: Recursive Solution

Move N-1 discs 1 peg to right.

Move largest disc 1 peg to left.

Move $\mathrm{N}-1$ discs 1 peg to right.

Towers of Hanoi: Recursive Solution

hanoi.c

\#include <stdio.h>
void hanoi (int n, char from, char to) $\{$
char temp;
if ($\mathrm{n}==0$) return;
temp $=$ getOtherPeg (from, to);
hanoi ($\mathrm{n}-1$, from, temp);
printf("Move disc \%d from \%c to \%c. $\backslash \mathrm{n} ", \mathrm{n}$, from, to);
hanoi ($\mathrm{n}-1$, temp, to);
\}
int main(void) \{ hanoi(4, 'A', 'C');
return 0;

```
hanoi.c
char getOtherPeg(char x, char y) {
    if (x == 'A' && y == 'B') || (x == 'B' && y == 'A')
        return 'C';
    if (x == 'A' && y == 'C') || (x == 'C' && y == 'A')
        return 'B';
    return 'A';
}
```

Towers of Hanoi: Recursive Solution

	Unix
hanoi.c	\% gcc hanoi.c \% a.out Move disc 1 from A to B. Move disc 2 from A to C. Move disc 1 from B to C.
	Move disc 3 from A to B. Move disc 1 from C to B. Move disc 2 from C to B. Move disc 1 from B to B. Move disc 4 from A to C. Move disc 1 from B to C. Move disc 2 from B to C. Move disc 1 from C to C. Move disc 3 from B to C. Move disc 1 from C to B. Move disc 2 from C to C. Move disc 1 from B to C.

Towers of Hanoi

Is world going to end (according to legend)?

- Monks have to solve problem with $\mathrm{N}=\mathbf{4 0}$ discs.
- Computer algorithm should help.

Better understanding of recursive algorithm supplies non-recursive solution!

- Alternate between two moves:

- See Sedgewick 5.2.

Summary

How does recursion work?

- Just like any other function call.

How does a function call work?
. Save away local environment using a stack.

Trace the executing of a recursive program.
. Use pictures.

Write simple recursive programs.

- Base case.
- Reduction step.

