
Lecture P6:  Recursion

Start

Goal

3

Overview

What is recursion?

■ When one function calls ITSELF directly or indirectly.

Why learn recursion?

■ New mode of thinking.

■ Powerful programming tool to solve a problem
by breaking it up into one (or more) smaller
problems of similar structure. 

! divide-and-conquer

■ Many computations are naturally self-referential.
– a Unix directory contains files and other directories
– Euclid’s gcd algorithm
– linked lists

4

Overview

How does recursion work? 
! Just like any other function call.

How does a function call work?

■ A function lives in a local environment:
– values of local variables
– which statement the computer is currently executing

■ When f() calls g(), the system
– saves local environment of f
– sets value of parameters in g
– jumps to first instruction of g, and executes that function
– returns from g, passing return value to f
– restores local environment of f
– resumes execution in f just after the function call to g

5

Implementing Functions

How does the compiler implement functions? 
! With a STACK.

Return from functions in last-in first-out (LIFO) order.

■ FUNCTION CALL:  push local environment onto stack.

■ RETURN:  pop from stack and restore local environment.



6

A Simple Example

Goal:  function to compute sum(n) = 0 + 1 + 2 + . . . + n-1 + n.

■ Simple ITERATIVE solution.

int sum(int n) {
int i, s = 0;
for (i = 0; i <= n; i++)

s += i;
return s;

}

iterative sum 1

int sum(int n) {
int s = n;
while (n > 0) {

n--;    
s += n;

}
return s;

}

iterative sum 2

Note that changing the variable 
n in sum does not change the 
value in the calling function.

7

A Simple Example

Goal:  function to compute sum(n) = 0 + 1 + 2 + . . . + n-1 + n.

■ Simple ITERATIVE solution.

■ Can also express using SELF-REFERENCE.





−+
=

=
otherwise)1sum(

0  if0
)sum(

nn
n

n
base case

reduction step

converges to 
base case

int sum(int n) {
if (0 == n)

return 0;
return n + sum(n-1);

}

recursive sum

base case

reduction step

sum(n-1)

8

A Simple Example

Goal:  function to compute sum(n) = 0 + 1 + 2 + . . . + n-1 + n.

■ Simple ITERATIVE solution.

■ Can also express using SELF-REFERENCE.

This is just a stupid example to illustrate recursion.

■ Don’t even need iteration, let alone recursion.

■ 0 + 1 + 2 + . . . + n = n(n+1) / 2

int sum(int n) {
return (n * (n+1)) / 2;

}

better sum

9

A Bad Recursive Function

BASE CASE is special input for which the answer is trivial. 

■ Won’t "bottom-out" of recursion without a base case.

■ Analog of infinite loops with for and while loops.

void mystery1(int n) {
printf("%d\n", n);
if (n % 2 == 0)

mystery1(n/2);
else

mystery1(3*n + 1);
}

mystery1(n)

Is n even?

no base case



10

A Bad Recursive Function

BASE CASE is special input for which the answer is trivial. 

REDUCTION STEP makes input converge to base case.

■ Unknown whether program terminates for all positive integers n.

■ Stay tuned for Halting Problem in Lecture T4.

void mystery2(int n) {
printf("%d\n", n);
if (n <= 1)

return;
else if (n % 2 == 0)

mystery2(n/2);
else

mystery2(3*n + 1);
}

mystery2(n)

base case

anti-reduction step

reduction step

11

Greatest Common Divisor

Find largest integer d that evenly divides into m and n.



 =

=
otherwise)%,gcd(

0  if
),gcd(

nmn
nm

nm
base case

reduction step

converges to 
base case

Euclid (300 BC)

gcd(1440, 408) = gcd(408, 216)
= gcd(216, 192)
= gcd(192, 24)
= gcd(24, 0)
= 24.

1440 =  25 × 32 × 51

408 =  23 × 31 × 171

12

Greatest Common Divisor

Find largest integer d that evenly divides into m and n.

int gcd(int m, int n) {
if (0 == n)

return m;
else

return gcd(n, m % n);
}

gcd(m, n)

base case

reduction step



 =

=
otherwise)%,gcd(

0  if
),gcd(

nmn
nm

nm
base case

reduction step

converges to 
base case

13

Number Conversion

To print binary representation of integer N:

■ Stop if N = 0.

■ Write ’1’ if N is odd; ’0’ if n is even.

■ Move pencil one position to left.

■ Print binary representation of  N / 2.
(integer division)

Easiest way to compute by hand.

■ Corresponds directly with a recursive program.

43            1
21           11
10          011
5         1011
2        01011
1       101011
0    

Check:  43  =  1 × 25 + 0 × 14 +  1 × 23  +  0 × 22 +  1 × 21  +  1 × 20

=    32     +      0       + 8     +      0      +     2     + 1



14

Recursive Number Conversion

Computer naturally prints from left to right.

■ So we need to first convert N / 2.

■ Then write ’0’ or ’1’.

Proof of correctness:

N = 2 * (N / 2) + (N % 2)

void convert(int N) {
if (N == 0)

return;
convert(N / 2);
printf("%d", N % 2);

}

convert( )

1 if N is odd; 0 if N is even

convert(43)
convert(21)

convert(10)
convert(5)
convert(2)

convert(1)
convert(0)
printf("1")

printf("0")
printf("1")

printf("0")
printf("1")

printf("1")

function calls

Indentation level pairs 
statements belonging 
to same "invocation"

% gcc convert.c
% a.out
43
101011

Unix

15

Recursive Number Conversion

Computer naturally prints from left to right.

■ So we need to first convert N / 2.

■ Then write ’0’ or ’1’.

Proof of correctness:

N = 2 * (N / 2) + (N % 2)

Convert to any base b ≤ 10.
! Change ’2’ to ’b’ everywhere in code.

■ Exercise:  extend to handle hexadecimal (base 16).

void convert(int N) {
if (N == 0)

return;
convert(N / 2);
printf("%d", N % 2);

}

convert( )

1 if N is odd; 0 if N is even

16

Root Finding

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Given a function, find a root, i.e., a value x such that f(x) = 0.

■ f(x) = x2 - x - 1

■ is a root.

Assume f is continuous and l, r satisfy  f(l) < 0.0 and f(r) > 0.0.

1.61803...
2

51 =+=φ

17

Root Finding

Reduction step:

■ Maintain interval [l, r] such that f(l) < 0, f(r) > 0.

■ Compute midpoint m = (l + r) / 2.

■ If f(m) < 0 then run algorithm recursively on interval is [m, r].

■ If f(m) > 0 then run algorithm recursively on interval is [l, m].

Progress achieved at each step.

■ Size of interval is cut in half.

Base case (when to stop):
■ Ideally when (0.0 == f(m)), but this may never happen!

– root may be irrational
– machine precision issues

■ Stop when (r - l) is sufficiently small.
– guarantees m is sufficiently close to root



18

Root Finding

Given a function, find a root, i.e., a value x such that f(x) = 0.

#define EPSILON 0.000001

double f (double x) {
return x*x - x - 1;

}

double bisect (double left, double right) {
double mid = (left + right) / 2;
if (right - left < EPSILON || 0.0 == f(mid))

return mid;
if (f(mid) < 0.0)

return bisect(mid, right);
return bisect(left, mid);

}  

recursive bisection function

19

Root Finding

Given a function, find a root, i.e., a value x such that f(x) = 0.

■ Fundamental problem in mathematics, engineering.
– to find minimum of a (differentiable) function, need to identify

where derivative is zero.

■ Faster methods if function is sufficiently smooth.
– Newton’s method.
– Steepest descent.

20

Possible Pitfalls With Recursion

Is recursion fast?

■ Yes.  We produced remarkably efficient program for 
exponentiation.

■ No.  Can easily write remarkably inefficient programs.







+
=
=

=

−− otherwise

1   if1

0  if0

21 nn

n
FF

n
n

F
Fibonacci numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34,  . . .

It takes a really 
long time to 

compute F(20).

int F(int n) {
if (0 == n || 1 == n)

return n;
else

return F(n-1) + F(n-2);
}

bad Fibonacci function

21

Possible Pitfalls With Recursion

F(10)

F(9) F(8)

F(8)

F(7) F(6)

F(7)

F(6) F(5)

F(6)

F(5) F(4)

F(7)

F(6) F(5)

Requires F(n) recursive calls to compute F(n).

F(8) is recomputed 2 times.

F(7) is recomputed 3 times.

F(6) is recomputed 5 times.

F(5) is recomputed 8 times.

...

F(1) is recomputed 12,555 times.

int F(int n) {
if (0 == n || 1 == n)

return n;
else

return F(n-1) + F(n-2);
}

bad Fibonacci function



22

Possible Pitfalls With Recursion

Recursion can take a long time if it needs to repeatedly recompute 
intermediate results.

■ DYNAMIC PROGRAMMING solution:  save away intermediate 
results in a table. 

int knownF[1000] = {0};

int F(int n) {
if (knownF[n] != 0)

return knownF[n];
else if (0 == n || 1 == n)

return n;
knownF[n] = F(n-1) + F(n-2);
return knownF[n];

}

Fibonacci using dynamic programming

Uses only 2n recursive 
calls to compute F(n).

Stores ith Fibonacci 
number in ith element. 

23

Recursion vs. Iteration

Fact 1.  Any recursive function can be written with iteration.

■ Compiler implements recursion with stack.

■ Can avoid recursion by explicitly maintaining a stack. 

Fact 2.  Any iterative function can be written with recursion.

Should I use iteration or recursion?

■ Consider ease of implementation.

■ Consider time/space efficiency.

24

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.

■ Only one disc may be moved at a time.

■ A disc can be placed either on empty peg or on top of a larger disc.
. 

Towers of Hanoi demo

Start Goal

Edouard Lucas (1883)
25

Towers of Hanoi:  Recursive Solution

Move N-1 discs 1 peg to right. Move largest disc 1 peg to left.

Move N-1 discs 1 peg to right.



26

Towers of Hanoi:  Recursive Solution

#include <stdio.h>
void hanoi(int n, char from, char to) {

char temp;
if (n == 0)

return;
temp = getOtherPeg(from, to);
hanoi(n-1, from, temp);
printf("Move disc %d from %c to %c.\n", n, from, to);
hanoi(n-1, temp, to);

}

int main(void) {
hanoi(4, ’A’, ’C’);
return 0;

}

hanoi.c

Solve 4 disc 
problem

27

Towers of Hanoi:  Recursive Solution

char getOtherPeg(char x, char y) {
if (x == ’A’ && y == ’B’) || (x == ’B’ && y == ’A’)

return ’C’;
if (x == ’A’ && y == ’C’) || (x == ’C’ && y == ’A’)

return ’B’;
return ’A’;

}

hanoi.c

28

Towers of Hanoi:  Recursive Solution

int main(void) {
HanoiLeft(4);
return 0;

}

hanoi.c

Solve 4 disc 
problem

% gcc hanoi.c
% a.out

Move disc 1 from A to B.
Move disc 2 from A to C.
Move disc 1 from B to C.
Move disc 3 from A to B.
Move disc 1 from C to B.
Move disc 2 from C to B.
Move disc 1 from B to B.
Move disc 4 from A to C.
Move disc 1 from B to C.
Move disc 2 from B to C.
Move disc 1 from C to C.
Move disc 3 from B to C.
Move disc 1 from C to B.
Move disc 2 from C to C.
Move disc 1 from B to C.

Unix

29

Towers of Hanoi

Is world going to end (according to legend)?

■ Monks have to solve problem with N = 40 discs.

■ Computer algorithm should help.
! Not really!  Takes 2N - 1 steps.

(assuming rate of 1 disc per second, will take 348 centuries)

Better understanding of recursive algorithm supplies non-recursive 
solution!

■ Alternate between two moves:
! Move smallest disc 1 peg to right (left) if N is even (odd).
! Make only legal move not involving smallest disc.

■ See Sedgewick  5.2.



30

Summary

How does recursion work?

■ Just like any other function call.

How does a function call work?

■ Save away local environment using a stack.

Trace the executing of a recursive program.

■ Use pictures.

Write simple recursive programs. 

■ Base case.

■ Reduction step.


