
Lecture P3:  Unix

2

Overview

Background

Files

■ Abstraction for storage (disks).

■ File manipulation commands.

Processes.

■ Abstraction for processor (CPU).

■ Some useful commands.

Interactions.

■ Between files and processes.

■ I/O redirection and piles.

3

Layers of Abstractions in Unix OS

Bare hardware.
Machine language.
Kernel.
User level (C programming).
Command level (shell).
Window system.

Windows

P

Command

User

Kernel

Machine

Hardware

4

Operating Systems

What does an OS do?

■ Makes lives easier:  hides low level details of bare machine.

■ Makes lives fairer:  arbitrates over competing resource demands.

What we learn today.

■ User level (C programming).

■ Command level (shell).



5

Operating Systems

Multics (1965-1970)

■ Ambitious OS project at MIT.

■ Pioneered most of innovations in modern OS.

– file system
– protection
– virtual machines

■ A little ahead of its time.

6

Operating Systems

Multics (1965-1970).

Unix / Linux  (Thompson and Ritchie 1969).

■ Simplicity and elegance.
– C language, bootstrapped implementation
– integrated command structure
– simplified, integrated file system
– used by most programmers

■ Continued development at AT&T (1970’s) and "shepherding it out."

■ Berkeley "BSD" (1978-1993):  TCP/IP.

■ Various flavors of commercial Unix (1980-1990).

■ Linux gave it new life (1991 - present).

10

Operating Systems

Multics (1965-1970).

Unix / Linux  (Thompson and Ritchie 1969).

DOS.

Macintosh.

Windows.

■ OS definition under litigation.

11

Files

File.

■ Sequence of bits.

■ A simple and powerful abstraction for
permanent storage (disks).

■ Extended for things beyond disks.

"Everything in Unix is a file."

Directory.

■ Sequence of files (and other directories).

Filename.

■ Sequence of directory names on the path
from "/" to the file.

/

bin lib uetc

zrnyecs126

files

mandelstock

mand32.txt

submit

aaclarke

/u/cs126/files/mandel/mand32.txt



12

File Manipulation Commands

cat, more show the contents of a file
% more xx

cp, rm, mv copy, remove, move
% cp xx yy     copy file xx to yy
% rm xx     delete file xx
% rm *     delete all files in current directory!
% mv xx yy     rename file xx to yy

ls list file names
% ls     list al files in current directory
% ls *.c     list all files ending in .c
% ls -tr     list all files, reverse-sorted by date
% ls -l     list all file details (permissions, size)

13

File Manipulation Commands

mkdir, rmdir make or remove directory
% mkdir hello     make a new directory named hello

pwd print name of current (working) directory

cd change directory
% cd ..     to parent directory
% cd ~     to my home directory
% cd ~xx     to xx’s home directory

chmod change read/write permissions
% chmod 600 hello.c          only you can read/write file hello.c

% chmod 700 mandel          for all files in directory mandel

% chmod 644 index.html  all Princeton students can read it

14

Processes

Process.

■ An abstraction for the processor (CPU).

■ Almost every command is a process.

Over 2,500 standard commands.

■ Thousand more available.

■ EXTENSIBLE:  can even add your own.

15

Unix Commands

lpr send file to printer
% lpr hello.c     print file hello.c

man, apropos online documentation
% man ls     get help on using ls command

cal, date, xclock time utilities
% cal 9 2000     display calendar for September, 2000
% date     display current date

bc, xcalc calculators
% xcalc     graphical version of scientific calculator

maple, matlab scientific computing



16

Unix Commands:  Text Processing

grep, awk, perl pattern matching

sort sort the lines of a file

diff print out any lines where two files differ

emacs, latex text processing
% emacs hello.c     edit file hello.c

ispell text processing
% ispell readme     spell-checker

17

Unix Commands:  Programming

emacs, xemacs         text processing
% emacs hello.c         edit file hello.c

cc, lcc, gcc,     C compilers
g++, javac     C++, Java compilers
% gcc hello.c     compile C program hello.c

gdb, jdb          C and Java debuggers

18

Unix Commands:  Specialized for COS 126

emacs126, xemacs126     use our customizations as default
% xemacs hello.c &

enscript126     pretty-print C code
% enscript126 hello.c

gcc126     compile with warnings
% gcc126 hello.c

submit126     submit COS 126 assignment for grading
% submit126 0 hello.c

19

Unix Commands:  Multimedia

acroread, ghostview display documents
% ghostview xx.ps     display PostScript file xx.ps

% acroread  yy.pdf     display Acrobat file yy.pdf

xv, gs display graphics
% xv giraffe.gif   display graphics file giraffe.gif
% gs mand.ps     display graphics  mand.ps

xfig create figures

audiotool play or record music

soffice StarOffice:  free Office clone



20

Unix Commands:  Communication

mail, pine email

rn read newsgroups

netscape browse web

telnet, rlogin, ssh login to remote computer

ftp, sftp download files

21

I/O Redirection and Pipes

22

Filters and Pipes

Standard input, standard output.

■ Abstract files for command interfaces.

Redirection:

■ Standard input from file.

■ Standard output to file.

Piping:

■ Connect standard output of one
command to standard input of the
next.

Don't confuse redirection and piping.

a.out > saveanswer
sort < myfile > myfilesorted

ls | wc -l > outputfile
plotprog | lpr
gamblerall | avg

plotprog > lpr

3

5

4

23

Multiprocessing

Abstraction provided by operating system.

■ MULTIPLE "virtual" machines for your use.

■ Outgrowth of 1960s "time-sharing."

For COS126.

■ One window for editor.

■ One window for UNIX
commands.

% emacs hello.c &
  [1] 18439

% netscape &
  [2] 18434

% jobs
  [1]  + Running  emacs hello.c
  [2]  - Running  netscape

Unix

Ampersand
indicates "do this
in the background"

Note:  can use ctrl-Z
and bg  instead of &



24

Shell

Shell.

■ The program that’s running inside your terminal window.

■ Much more than just manipulating files and launching programs.

■ It’s an "interpreter" with its own powerful programming language.

#!/bin/csh -f
printf "Hello world! Give me a number:\n"
set n = $<
printf "Thanks! I’ve always been fond of %d\n" $n

Don’t worry about details.

25

Shell

Command interface to UNIX.

Just another programming language.

■ sequence of instructions

■ variables

■ branches, loops

mv file1 tmp;
mv file2 file1;
mv tmp file2

#!/bin/csh -f
@ n = 0
while ($n < 5)
  printf "from Kevin’s class\n" |
    mail -s "yo steve!"
    stephen_w_gulyas@groton.pfizer.com
  @ n = ($n + 1)
  sleep 60
end

Shell program to annoy Steve with email

repeat 5 times

email Steve

wait 1 minute

26

Shell

EXTENSIBLE:  add another command.

■ rename a.out

■ or chmod 700  a file containing shell commands

Primary use.

■ low overhead "programming" to manipulate files and invoke
commands

% gcc avg.c
% mv a.out avg
% gamblerall | avg | lpr

Unix

27

Graphics

ANSI C does not directly support graphical output.

■ Need help from operating system.

■ In this course we use "PostScript" to get cool pictures.

■ Don’t worry about details yet.

phoenix.Princeton.EDU%  cat ifs.ps
  %!
  50 50 translate
  0 0 moveto 512 0 lineto
  256 512 lineto closepath stroke
  /pt {0 360 arc fill} def
  125.0 250.0 5.0 pt
  312.5 125.0 5.0 pt
  156.2  62.5 5.0 pt
  328.1  31.2 5.0 pt
  414.1  15.6 5.0 pt
  showpage

phoenix.Princeton.EDU%  gs ifs.ps

Unix



28

Graphics

Game played on equilateral triangle, with vertices R, G, B.

■ Start at R.

■ Repeat the following:

– pick a random vertex
– move halfway between current

point and vertex
– draw a "dot" in color of vertex

R G

B

What picture
emerges?

0

1

2

3

4

5

6

29

Graphics
#include <stdio.h>
#include <stdlib.h>
#include <stdio.h>
#define N 50000
int randomInteger(int n) { ... }

int main(void) {
  int i, r;
  double x = 0.0, y = 0.0, x0, y0;

  for (i = 0; i < N; i++) {
    r = randomInteger(3);
    if (r == 0)      { x0 =   0.0; y0 =   0.0; }
    else if (r == 1) { x0 = 512.0; y0 =   0.0; }
    else             { x0 = 256.0; y0 = 512.0; }
    x = (x0 + x) / 2.0;
    y = (y0 + y) / 2.0;
    printf("%f %f\n", x, y);
  }
  return 0;
}

ifs.c

30

Graphics

Text output is boring.
■ Replace and add printf()  statements to create PostScript.

■ Use gs to view PostScript file.

. . .

printf("%%!\n 50 50 translate\n");
printf("/pt {0 360 arc fill} def\n");
printf("0 0 moveto 512 0 lineto ");
printf("256 512 lineto closepath stroke\n");

for (i = 0; i < N; i++) {
  . . .
  printf("%f %f 1.0 pt\n", x, y);
}

printf("showpage\n");

ifs.c

draw enclosing
triangle

32

Conclusions

Choose your weapon wisely.

■ C vs. Shell.

■ Systems programming vs. scripting.

Abstractions:  how to make big boxes using small ones.

■ Systems programming:  makes component boxes.
– compiled, rich types
– good for creating components which demand high-performance

or complicated algorithms

■ Scripting:  glues component boxes together.
– less efficient since interpreted not compiled
– good for gluing together existing components
– rapid development for gluing and GUI


