Lecture P3: Unix

UNIX

Overview

Background

Files
. Abstraction for storage (disks).
. File manipulation commands.

Processes.
. Abstraction for processor (CPU).
. Some useful commands.

Interactions.
. Between files and processes.
. 1/O redirection and piles.

Layers of Abstractions in Unix OS

Bare hardware.

Machine language.

Kernel.

User level (C programming).
Command level (shell).
Window system.

Hardware

Machine

Kernel

Command

Windows

Operating Systems

What does an OS do?
. Makes lives easier: hides low level details of bare machine.
. Makes lives fairer: arbitrates over competing resource demands.

What we learn today.
. User level (C programming).
. Command level (shell).

Operating Systems

Multics (1965-1970)
. Ambitious OS project at MIT.
. Pioneered most of innovations in modern OS.
- file system
- protection
- virtual machines
. Alittle ahead of its time.

Operating Systems
Multics (1965-1970).

Unix / Linux (Thompson and Ritchie 1969).

. Simplicity and elegance.
- C language, bootstrapped implementation
- integrated command structure
- simplified, integrated file system
- used by most programmers

. Continued development at AT&T (1970’s) and "shepherding it out.”

. Berkeley "BSD" (1978-1993): TCP/IP.

. Various flavors of commercial Unix (1980-1990).

. Linux gave it new life (1991 - present).

Operating Systems
Multics (1965-1970).
Unix / Linux (Thompson and Ritchie 1969).
DOS.
Macintosh.

Windows.
. OS definition under litigation.

10

Files
File. J
. Sequence of bits. /K
. A simple and powerful abstraction for bin lib etc u
permanent storage (disks).
. Extended for things beyond disks.
aaclarke cs126 zrnye
"Everything in Unix is a file." /\
Directory. files submit
. Sequence of files (and other directories). /\
Filename. stock mandel
. Sequence of directory names on the path \
from "/" to the file.
mand32.txt

/u/cs126/files/mandel/mand32.txt

11

File Manipulation Commands

File Manipulation Commands

mkdir, rmdir make or remove directory
% mkdir hello make a new directory named hello

pwd print name of current (working) directory
cd change directory

% cd .. to parent directory

% cd ~ to my home directory

% cd ~xx to xx’s home directory

chmod change read/write permissions

% chmod 600 hello.c
% chmod 700 mandel
% chmod 644 index.html

only you can read/write file hello.c
for all files in directory mandel
all Princeton students can read it

13

cat, more show the contents of a file

% more Xx

cp, rm, mv copy, remove, move

% cp XX yy copy file xx to yy

% rm xx delete file xx

% rm * delete all files in current directory!

% mv XX yy rename file xx to yy

Is list file names

% Is list al files in current directory

% Is *.c list all files ending in .c

% Is -tr list all files, reverse-sorted by date

% s -l list all file details (permissions, size)
Processes

Process.

. An abstraction for the processor (CPU).

. Almost every command is a process.

Over 2,500 standard commands.
. Thousand more available.
EXTENSIBLE: can even add your own.

14

Unix Commands

Ipr send file to printer
% lpr hello.c print file hello.c

man, apropos online documentation

% man Is get help on using Is command

cal, date, xclock time utilities

% cal 9 2000 display calendar for September, 2000
% date display current date

bc, xcalc calculators

% xcalc graphical version of scientific calculator

maple, matlab scientific computing

15

Unix Commands: Text Processing

grep, awk, perl pattern matching

sort sort the lines of a file

diff print out any lines where two files differ
emacs, latex text processing

% emacs hello.c edit file hello.c

ispell text processing

% ispell readme spell-checker

16

Unix Commands: Programming

emacs, xemacs text processing

% emacs hello.c edit file hello.c

cc, lec, gee, C compilers

g++, javac C++, Java compilers

% gcc hello.c compile C program hello.c
gdb, jdb C and Java debuggers

17

Unix Commands: Specialized for COS 126

emacsl126, xemacs126 use our customizations as default
% xemacs hello.c &

enscript126 pretty-print C code
% enscript126 hello.c

gccl26 compile with warnings
% gccl26 hello.c

submit126 submit COS 126 assignment for grading
% submit126 0 hello.c

18

Unix Commands: Multimedia

acroread, ghostview display documents

% ghostview xx.ps display PostScript file xx.ps
% acroread yy.pdf display Acrobat file yy.pdf
XV, gs display graphics

% xv giraffe.gif display graphics file giraffe.qgif
% gs mand.ps display graphics mand.ps
xfig create figures

audiotool play or record music

soffice StarOffice: free Office clone

19

Unix Commands: Communication

mail, pine email

m read newsgroups
netscape browse web

telnet, rlogin, ssh login to remote computer
ftp, sftp download files

20

/0 Redirection and Pipes

stilim P
—.-“.ﬂm} :.__l_._-'
aicl il

prindfi =

& “Stamdard [0, 2 delsull attschimsenl. 3: nedirect output

&40 redirect bl impun and ostpsi, 5 pipes

21

Filters and Pipes

. Abstract files for command interfaces.

Redirection: /

.) .out >
. Standard input from file. a.out > saveanswer]

Standard input, standard output. @

sort < myfile > myfilesorted

. Standard output to file. \
Piping: C

. Connect standard output of one

Is | we -1 > outputfile

command to standard input of the plotprog | Ipr
next. gamblerall | avg
Don't confuse redirection and piping. l

plotprog > Ipr

®

22

Multiprocessing

Abstraction provided by operating system.
. MULTIPLE "virtual" machines for your use.
. Outgrowth of 1960s "“time-sharing."

For COS126.

+ One window for edior

. One window for UNIX % emacs hello.c &
commands. [1] 18439
Ampersand
% netscape & indicates "do this
[2] 18434 in the background"

% jobs

Note: can use ctrl-Z [1] + Running emacs hello.c

and bg instead of & [2] - Running netscape

23

Shell

Shell.
. The program that’s running inside your terminal window.
Much more than just manipulating files and launching programs.
It's an "interpreter” with its own powerful programming language.

#!/bin/csh -f

printf "Hello world! Give me a number:\n*

setn =$<

printf “Thanks! I've always been fond of %d\n" $n

Don’t worry about details.

24

Shell

Command interface to UNIX.

Just another programming language.

. sequence of instructions mv filel tmp;
iabl mv file2 filel;
- vanables mv tmp file2
branches, loops
Shell program to annoy Steve with emalil

#!/bin/csh -f
@n=0

repeat 5 times ::: > | while ($n < 5)

printf "from Kevin’s class\n" |

stephen_w_gulyas@groton.pfizer.com

@n=($n+1)
wait 1 minute ::: >| sleep 60
end

25

Shell

EXTENSIBLE: add another command.
rename a.out
. or chmod 700 a file containing shell commands

% gcc avg.c
% mv a.out avg
% gamblerall | avg | Ipr

Primary use.

low overhead "programming" to manipulate files and invoke
commands

26

Graphics

ANSI C does not directly support graphical output.
Need help from operating system.
In this course we use "PostScript" to get cool pictures.
Don’t worry about details yet.

phoenix.Princeton.EDU% cat ifs.ps
%!
50 50 translate
0 0 moveto 512 0 lineto
256 512 lineto closepath stroke
/pt {0 360 arc fill} def
125.0 250.0 5.0 pt
312.5125.0 5.0 pt .
156.2 62.5 5.0 pt
328.1 31.25.0 pt
414.1 15.6 5.0 pt '
showpage

phoenix.Princeton.EDU% gs ifs.ps

27

Graphics

Game played on equilateral triangle, with vertices R, G, B.
. StartatR.
. Repeat the following:
- pick a random vertex

- move halfway between current
point and vertex

— draw a "dot" in color of vertex

What picture
emerges?

28

Graphics

#include <stdlib.h>

#include <stdio.h>

#define N 50000

int randominteger(intn) { ... }

int main(void) {
inti, r;
double x = 0.0, y = 0.0, x0, yO;

for (i=0;i<N; i++) {
r = randominteger(3);
ifr==0) {x0= 0.0;y0= 0.0;}
elseif (r==1) {x0 =512.0; y0 = 0.0;}
else {x0 =256.0; y0 =512.0; }
x=(x0+x)/2.0;
y=(0+y)/20;
printf("%f %f\n", X, y);

}

return O;

}

29

Graphics

Text output is boring.
. Replace and add printf() statements to create PostScript.
. Use gs to view PostScript file.

printf("%%!"\n 50 50 translate\n");

printf("/pt {0 360 arc fill} defin"); -
prNtf("0 0 moveto 512 0 lineto); <::“ draw enclosing

printf("256 512 lineto closepath stroke\n"); triangle

for (i=0;i<N; i++) {

printf("%f %f 1.0 pt\n", x, y);
}

printf("showpage\n™);

30

Conclusions

Choose your weapon wisely.
. Cuvs. Shell.
. Systems programming vs. scripting.

Abstractions: how to make big boxes using small ones.
. Systems programming: makes component boxes.
- compiled, rich types

- good for creating components which demand high-performance
or complicated algorithms

. Scripting: glues component boxes together.
- less efficient since interpreted not compiled
- good for gluing together existing components
- rapid development for gluing and GUI

32

