Lecture P10: Trees

Overview

Culmination of the programming portion of this class.
. Solve a database search problem.

Tree data structure.
. Versatile and useful.
. Naturally recursive.
. Application of stacks and queues.

Searching a Database

Database entries.
. Names and social security numbers.

Desired operations. SS # Last

. Insert student. 1920342006 | Arac

. Delete student. 2012121991 | Baron

. Search for name given ID number. 1779999898 | Ber gbrei t er

2328761212 | Buchen

1229993434 |Durrett

Goal. 1628822273 | Gr at zer

. All operations fast, even
for huge databases.

"search key"

Data structure that supports these
operations is called a SYMBOL TABLE.

Searching a Database

Other applications.
. Online phone book looks up names and telephone numbers.
. Spell checker looks up words in dictionary.
. Internet domain server looks up IP addresses.

. Compiler looks up variable names to find type and memory
address.

Representing the Database Entries Symbol Table ADT

Define | t em h file to encapsulate generic database entry. Define ST. h file to specify database operations.

. Insert and search code should work for any item type. . Make it atrue symbol table ADT.
—ideally Item would be an ADT

. Key is field in search.
e RTE

ELLA #include "1 TEM h | t em STsear ch(Key); /* search for Key in database */
typedef int Key; . void STinsert(ltem; /* insert new |teminto database */
typedef struct { |ni e?ggﬁeilki’: Egy k2) { voi d STshow(voi d); /[* print all Itenms in database */

Key 1D } ' int STcount(void); /* nunber itens in database */
char name[30] ; int 1ess(Key k1, Key k2) { void STdel ete(lten); /* delete Item from database */
b Item return k1 < k2;
R b
Item NULLitem = {-1, }s Key key(ltemx) {
int eq(Key, Key): ; return x.ID
int | ess(Key, Key); .
Key key(l(te?/r)' y) VOi d'show(ltem x) {
voi d show(1tem: printf("% %\n", x.1D, Xx.nane);
w(ltem }
Unsorted Array Representation of Database Unsorted Array Representation of Database
Maintain array of Items. Maintain array of Items.
. Use SEQUENTIAL SEARCH to find database | t em . Use SEQUENTIAL SEARCH to find database | t em
#define MAXSI ZE 10000 Advantage: inserting is fast.

It em st [MAXSI ZE] ; @Array of
elements lE >|int N = 0; database Items. Key drawback: searching is slow.

. Need to look at every database entry if Key not found.

Item STinsert(ltemiten) {
st[N] = item
N++;

}

I'tem STsearch(Key k) {
int i;
for (i =0; i <N i+4+)
if eq(k, key(st[i]))
Key k found. :::> return st[i];
return NULLi tem Key k not found
} -

Sorted Array Representation of Database

Maintain array of Items. E

. Storein sorted order (by Key).
. Use BINARY SEARCH to find database | t em.

STsortedarray.c (Sedgewick 12.6)

: #defi ne MAXSI ZE 10000
LR It em st [MAXSI ZE] ;
database ltems.

Itemsearch(int I, int r, Key k) {
int m=(l +r) [/ 2

if (1 >r)
Key k not found. :::> return NULLi tem

else if eq(k, key(st[ni))
Key k found. return st[nj;

else if less(k, key(st[nj))

— return search(l, m1, k);
Divide-and- b o s
conquer. return search(mtl, r, k);

Sorted Array Representation of Database

Maintain array of Items.
. Storein sorted order (by Key).
. Use BINARY SEARCH to find database | t em

"Wrapper" for
search function.

STsortedarray.c (Sedgewick 12.6)

Item STsearch(Key k) {
int N= Stcount();
return search(0, N1, k);

}

Sorted Array Representation of Database

Maintain array of Items.
. Storein sorted order (by Key).
. Use BINARY SEARCH to find database | t em

Advantage: searching is fast.

Key drawback: inserting is slow.

Cost of Binary Search

How many "comparisons" to find a name in database of size N?

. Divide list in half each time.

5000 0 2500 0O 1250 00 625 0O 312 0 156 O 78 0O 39 J
809040201

. [og, NO= number of digits in binary representation of N.
. 5000,,=1001110001000,

. log, (thousand) = 10
. log, (million) = 20
. log, (billion) = 30

The log functions grows very slowly.
2X=N
x =log,N

Without binary search (or if unsorted): may need to look at all N
items.

. Nvs.log, N savings is staggering for large files.
. Milliseconds vs. years.

Insert Using Sorted Array Representation

Key Problem: insertion is slow.
. Want to keep entries in sorted order.
. Have to move larger keys over one position to right.

4 |6 (14/20|25|26|32|47|55|56|58

Demo: inserting 25 into a sorted array.

Insert Using Sorted Array Representation

Key Problem: insertion is slow.

. Want to keep entries in sorted order.

. Have to move larger keys over one position to right.
. Exercise: write code for insertion.

4 |6 (14/20|25|26|32|47|55|56|58

Demo: inserting 25 into a sorted array.

Problem 2: need to fix maximum database size ahead of time.

Summary

Database entries.

Is there any way
to have fast insert
AND search?

. Names and social security numbers.

Desired operations.
. Insert, delete, search. @

Goal.
. Make all of these operations FAST even for huge databases.

asymptotic time computer time
search insert delete search insert delete

sorted array instant | 2 hour | 2 hour

unsorted array 2 hour | instant | 2 hour

goal log N log N log N instant instant instant

Binary Tree

Yes. Use TWO links per node.

Binary Treein C

SThst.h

typedef struct STnode* |ink; 51
struct STnode {
Itemitem ;
link left; Item
},"”k”gh“ left |right
i nk head;
Represent in C with TWO links per 66
node.
. Leftmost arrow corresponds to
left link.

INULL| [NULL| [NULL| [NULL| INULL| [NULL]

. Rightmost to right link.

Binary Search Tree

Binary tree in "sorted" order.
. Maintain ordering property for ALL sub-trees.

root (middle value)

left subtree right subtree
(smaller values) (smaller values)

Binary Search Tree

Binary tree in "sorted" order.
. Maintain ordering property for ALL sub-trees.

Binary Search Tree

Binary tree in "sorted" order.
. Maintain ordering property for ALL subtrees.

Binary Search Tree

Binary tree in "sorted" order.
. Many BST's for the same input data.
. Have different tree shapes.

Search in Binary Search Tree
Search for Key k in binary search tree.
. Analogous to binary search in sorted array.
Search algorithm:
. Start at head node.
. If Key of current node is k, return node.

. Go LEFT if current node has Key <Kk.
. Go RIGHT if current node has Key > k.

Search in BST's

Search for Key k.

STbst.c (Sedgewick 12.7)
Item search (link h, Key k) {
if (h == NULL) ;
feturn NULLitem <',:: Key k not in tree.
key(h->item)

1L l. elseif (eq(k,
Found Key k. I_:"> return h->item

return search(h->left, k); <

| se
Look for Key k € .
in right subt)r/ee. l—::}> return search(h->right,

k),

| tem STsear ch(Key k) { Search for Key k

return search(head, k); in BST tree
} rooted at head.

]

else if (less(k, key(h->item) ook for Key K
~'_|in left subtree.

Cost of BST Search

Depends on tree shape.
. Proportional to length of path from root to Key.
. "Balanced"

-21og, N comparisons

- proportional to binary search cost

. "Unbalanced"
- takes N comparisons for degenerate tree shapes
- can be as slow as sequential search

Algorithm works for any tree shape.

. With cleverness (see COS 226), can ensure tree is always
balanced.

Insert Using BST's

How to insert new database Item.
. Search for key of database Item.
. Search ends at NULL pointer.

. New Item "belongs" here.
. Allocate memory for new Item, and link it to tree.

Insert Using BST's

link insert(link h, Itemitem {
Key k key(item;
Key k2 key(h->item;

P | i (ho== UL
Insert new

return NEWhode(item NULL, NULL);

node here. ::>el se if (less(k, k2))

"—|_:\ h->left = insert(h->left, item;

Divide-and- > else

e h->right = insert(h->right, item;
return h;

}

void STinsert(ltemiten { <::“ Wrapper function.
head = insert(head, item;

) |

Insert Using BST's

BST.c (Sedgewick 12.7)

I'ink NEWhode(ltemitem link left, link right) {
link x = mal | oc(sizeof *x);
i f(x == NULL) {
printf("Error allocating nenmory.\n");
exi t (EXI T_FAI LURE) ;

}
X->i tem item AIIo:_:a_te_ memory
x->| ef t left; and initialize.

x->ri ght right;
return x;

Insertion Costin BST

Depends on tree shape.
. Costis proportional to length of path from root to node.

Tree shape depends on order keys are inserted.
. Insertin "random" order.
- leads to "well-balanced" tree
- average length of path from root to node is 1.44 log, N

. Insert in sorted or reverse-sorted order.
- degenerates into linked list
- takes N -1 comparisons

Algorithm works for any tree shape.

. With cleverness (see COS 226), can ensure tree is always
balanced.

Question

Current code searches for a name given an ID number.

What if we want to search for an ID number given a name?
e

typedef char Key[30]; #i ncl ude <string. h>
typedef struct { int eq(Key k1, Key k2) {
int ID; return strcmp(kl, k2) == 0;
Key nane; }
} ltem
int |ess(Key k1, Key k2) {
Item NULLitem = {-1, ""}; return strcnp(kl, k2) < 0;

}

Key key(ltemiten) {
return item nane;

int eq(Key, Key);
int | ess(Key, Key);
Key key(ltem;

}

Other Types of Trees

Trees.
. Nodes need not have exactly two children.
. Order of children may not be important.

Examples. Charles
. Family tree. dad mom
Philip Elizabeth Il
Andrew Alice George VI Elizabeth |
George | Olga Louis Victoria George V Mary Claude Celia

Other Types of Trees

Trees.
. Nodes need not have exactly two children.
. Order of children may not be important.

Examples.

. Family tree.

. Parsetree.
(a*(b+c))-(d+e)

Other Types of Trees

Trees. !
. Nodes need not have exactly two /R
children. bin lib etc u
. Order of children may not be important. /\
Examples. aaclarke cs126 zmye
. Family tree.
. Parse tree. %\
. Unix file hierarchy. files grades submit
- not binary m
mandel stock tsp

POINT.h point.c tsp13509.txt

Traversing Binary Trees

Goal: visit (process) each node in tree in some order.
. "Tree traversal."

wrapper function :::> void STprint(void) {

traverse(head);

}

voi d traversel norder(link h) {
if (h == NULL)
return;

traverse(h->left);

traverse left subtree

show h->item;

<# process node h

traverse(h->right);

traverse right subtree

Traversing Binary Trees

Goal: visit (process) each node in tree in some order.

. "Tree traversal."
. Goal realized no matter what order nodes are visited.
—inorder: visit between recursive calls

inorder

voi d traversel norder(link h) {
if (h == NULL)
return;
traverse(h->left);
show h->item;
traverse(h->right);

Traversing Binary Trees

Goal: visit (process) each node in tree in some order.
. "Tree traversal."
. Goal realized no matter what order nodes are visited.
—inorder: visit between recursive calls
- preorder: visit before recursive calls

preorder

voi d traversePreorder(link h) {
if (h == NULL)
return;
show(h->i ten);
traverse(h->left);
traverse(h->right);

}

Traversing Binary Trees

Goal: visit (process) each node in tree in some order.

. "Tree traversal."

. Goal realized no matter what order nodes are visited.
—inorder: visit between recursive calls
- preorder: visit before recursive calls
- postorder: visit after recursive calls

voi d traversePostorder(link h) {
if (h == NULL)
return;
traverse(h->left);
traverse(h->right);
show(h->iten);

Traversing Binary Trees

Goal: visit (process) each node in tree in some order.
. "Tree traversal."
. Goal realized no matter what order nodes are visited.
—inorder: visit between recursive calls
- preorder: visit before recursive calls
- postorder: visit after recursive calls

#

Preorder Traversal With Explicit Stack

Visit the top node on the stack.
. Push its children onto stack.

=1

Push right node
before left, so that left
node is visited first.

preorder traversal with stack

void traverse(link h) {
STACKpush(h);
while (!STACKenmpty()) {
h = STACKpop();
show h->i tem;
if (h->right !'= NULL)

|—:> STACKpush(h->right);

if (h->left !'= NULL)
STACKpush(h->l eft);

Level Traversal With Queue

Q. What happens if we replace stack with QUEUE? E

. Level order traversal.
. Visit nodes in order from distance to root.

level traversal with queue

voi d traverse(link h) {
QUEUEput (h);
while (!QUEUE senpty()) {
h = QUEUEget ();
show h->item;
if (h->left !'= NULL)
QUEUEput (h->l eft);
i f(h->right !'= NULL)
QUEUEput (h->right);

}
}
Summary
How to insert and search a database using:
. Arrays.
. Linked lists.

. Binary search trees.

Performance characteristics using different data structures.

The meaning of different traversal orders and how the code for them

works.

Lecture P9: Extra Notes

Linked List Representation of Database

Keep items in a linked list.
. Storein sorted order.

Insert. }

typedef struct node* |ink;
struct node {
Itemitem
l'i nk next;

. Only need to change links.
. No need to "move" large amounts of data.

[[{20 [z [{2 [[

=[]

Linked List Representation of Database

Keep items in a linked list.
. Storein sorted order.

typedef struct node* |ink;
struct node {

Itemitem

l'i nk next;

Insert. }

. Only need to change links.
. No need to "move" large amounts of data.

Linked List Representation of Database

Search.
. Can’t use binary search since no DIRECT access to middle
element.
. Use sequential search.
- may need to search entire linked list to find desired Key
- much slower than binary search

Item STsearch(Key k) {
link x;
for (x = head; x != NULL; x = x->next)
if (eq(k, key(x))
return x->item
return NULLi tem

}

