Lecture A4: Sequential Circuits

Architecture

Lecture A1 – A2: TOY machine.

Lecture A3: Boolean logic and combinational circuits.

- In principle, we could build TOY computer with one gigantic combinational circuit.
 - CI E
- . Each circuit element used (at most) once.

Today.

- . How to reuse circuit elements.
- . How to store bits of information in memory.

Next time.

. Glue these components into a TOY computer.

Sequential vs. Combinational Circuits

Combinational circuits.

Output determined solely by inputs.

Sequential circuits.

- . Feedback loop.
- Output determined by inputs and previous outputs.

Flip-Flop

Flip-flop.

- A smallest sequential circuit.
- . Can "remember" one bit of information.

We will consider many flavors.

Truth Table and Timing Diagram (for SR Flip-Flop)

Truth table.

- Values vary over time.
- S(t), R(t), Q(t) denote value at time t.

Characteristic equation.

0 (1)		(00 0
Q(t+ ε)	= S(t) + R'(t)Q(t)	(SR = 0

Sample timing diagram.

Clock

Clock.

- Regular on-off pulse.
- Synchronize operations of different circuit elements.
- . 800 MHz clock means 800 million pulses per second.

Clocked D Flip-Flop

Clocked D Flip-Flop.

Register file: n bits.

CI E

. n bits to choose from.

• On clock pulse: if D = 1, then set; if D = 0, then reset

Master Slave Flip-Flop

Master-slave flip-flop (falling edge-trigger).

. Input can only change on falling edge.

Register File (bits) Register file: n bits. . Decoder writes input to address bit. . Address specifies which bit. - How many bits needed to specify address? address . If write = 1, input gets copied into chosen bit. addres . If write = 0, chosen bit appears on output. reg₀ reg₁ reg₂ Decoder input reg₃ write reg₄ clock reg₅ output reg₆ reg₇ Interface (8 bits)

11

Register File (bits)

. Multiplexer copies address bit to output.

Register File (words)

Register file: n registers (words), k bits per register.

- n k-bit words to choose from.
 - TOY main memory: 256 16-bit words.
 - TOY registers: 8 16-bit words.
 - Real computer: 500 million 64-bit words.
- Address specifies which word.
- If write = 1, input gets copied into chosen word.
- . If write = 0, chosen word appears on output.

address

Register File (words)

Register file: n registers (words), k bits per register.

- . Single decoder writes k-bit input word to register.
- . k multiplexers copy register contents to output.

Stand-Alone Register

