Lecture A4: Sequential Circuits

Sequential vs. Combinational Circuits

Combinational circuits.

- Output determined solely by inputs.

Sequential circuits.
. Feedback loop.

- Output determined by inputs and previous outputs.

Architecture

Lecture A1 - A2: TOY machine.

Lecture A3: Boolean logic and combinational circuits.

- In principle, we could build TOY computer with one gigantic combinational circuit.
- Each circuit element used (at most) once.

Today.

- How to reuse circuit elements.
. How to store bits of information in memory.
Next time.
- Glue these components into a TOY computer.

Flip-Flop

Flip-flop.

- A smallest sequential circuit.
. Can "remember" one bit of information.

We will consider many flavors.

Clock

Clock.

- Regular on-off pulse.
- Synchronize operations of different circuit elements.
- 800 MHz clock means 800 million pulses per second

Truth Table and Timing Diagram (for SR Flip-Flop)

Truth table.

- Values vary over time.
- $\mathbf{S}(\mathrm{t}), \mathrm{R}(\mathrm{t}), \mathrm{Q}(\mathrm{t})$ denote value at time t .

Characteristic equation.

$$
\mathbf{Q}(\mathbf{t}+\varepsilon)=\mathbf{S}(\mathbf{t})+\mathbf{R}^{\prime}(\mathrm{t}) \mathbf{Q}(\mathrm{t})
$$

Sample timing diagram.

SR Flip Flop Truth Table			
S(t)	$\mathrm{R}(\mathrm{t})$	$Q(t)$	$Q(t+\varepsilon)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	
1	1	1	

Clocked SR Flip-Flop

Clocked SR Flip-Flop.
. Like SR flip-flop but S and R only work if clock is on.

Implementation

Clocked D Flip-Flop

Clocked D Flip-Flop.

- On clock pulse: if $D=1$, then set; if $D=0$, then reset

Register File (bits)

Register file: n bits.

- n bits to choose from.
- Address specifies which bit.
- How many bits needed to specify address?
- If write $=1$, input gets copied into chosen bit.
- If write $=\mathbf{0}$, chosen bit appears on output.

Master Slave Flip-Flop

Master-slave flip-flop (falling edge-trigger).

- Input can only change on falling edge.

Interface

Register File (bits)

Register file: n bits.

- Decoder writes input to address bit.
- Multiplexer copies address bit to output.

Register File (words)

Register file: n registers (words), k bits per register.

- n k-bit words to choose from.
- TOY main memory: 256 16-bit words.
- TOY registers: 8 16-bit words.
- Real computer: 500 million 64-bit words.
- Address specifies which word.
- If write $=1$, input gets copied into chosen word.
. If write $=\mathbf{0}$, chosen word appears on output.

1-Bit Counter

1-bit counter.
. "Clock" whose cycle is twice as long as input.

Implementation

Interface

Register File (words)

Register file: n registers (words), k bits per register.

- Single decoder writes k-bit input word to register.
. k multiplexers copy register contents to output.

N -Bit Counter

N -bit counter.

- Chain N 1-bit counters together.

Stand-Alone Register

4-bit register.

