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Abstract—
A fundamental problem that confronts peer-to-peer applications is the

efficient location of the node that stores a desired data item. This paper
presents Chord, a distributed lookup protocol that addresses this problem.
Chord provides support for just one operation: given a key, it maps the
key onto a node. Data location can be easily implemented on top of Chord
by associating a key with each data item, and storing the key/data pair at
the node to which the key maps. Chord adapts efficiently as nodes join
and leave the system, and can answer queries even if the system is contin-
uously changing. Results from theoretical analysis and simulations show
that Chord is scalable: communication cost and the state maintained by
each node scale logarithmically with the number of Chord nodes.

I. INTRODUCTION

Peer-to-peer systems and applications are distributed systems
without any centralized control or hierarchical organization, in
which each node runs software with equivalent functionality.
A review of the features of recent peer-to-peer applications
yields a long list: redundant storage, permanence, selection of
nearby servers, anonymity, search, authentication, and hierar-
chical naming. Despite this rich set of features, the core oper-
ation in most peer-to-peer systems is efficient location of data
items. The contribution of this paper is a scalable protocol for
lookup in a dynamic peer-to-peer system with frequent node ar-
rivals and departures.
The Chord protocol supports just one operation: given a key,

it maps the key onto a node. Depending on the application using
Chord, that node might be responsible for storing a value associ-
ated with the key. Chord uses consistent hashing [12] to assign
keys to Chord nodes. Consistent hashing tends to balance load,
since each node receives roughly the same number of keys, and
requires relatively little movement of keys when nodes join and
leave the system.
Previous work on consistent hashing assumes that each node

is aware of most of the other nodes in the system, an approach
that does not scale well to large numbers of nodes. In con-
trast, each Chord node needs “routing” information about only
a few other nodes. Because the routing table is distributed, a
Chord node communicates with other nodes in order to perform
a lookup. In the steady state, in an N -node system, each node
maintains information about onlyO(log N) other nodes, and re-
solves all lookups viaO(log N)messages to other nodes. Chord
maintains its routing information as nodes join and leave the sys-
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tem.
A Chord node requires information about O(log N) other

nodes for efficient routing, but performance degrades gracefully
when that information is out of date. This is important in prac-
tice because nodes will join and leave arbitrarily, and consis-
tency of evenO(log N) state may be hard to maintain. Only one
piece of information per node need be correct in order for Chord
to guarantee correct (though possibly slow) routing of queries;
Chord has a simple algorithm for maintaining this information
in a dynamic environment.
The contributions of this paper are the Chord algorithm, the

proof of its correctness, and simulation results demonstrating
the strength of the algorithm. We also report some initial results
on how the Chord routing protocol can be extended to take into
account the physical network topology. Readers interested in an
application of Chord and how Chord behaves on a small Internet
testbed are referred to Dabek et al. [9]. The results reported by
Dabek et al. are consistent with the simulation results presented
in this paper.
The rest of this paper is structured as follows. Section II com-

pares Chord to related work. Section III presents the system
model that motivates the Chord protocol. Section IV presents
the Chord protocol and proves several of its properties. Sec-
tion V presents simulations supporting our claims about Chord’s
performance. Finally, we summarize our contributions in Sec-
tion VII.

II. RELATEDWORK

Three features that distinguish Chord from many other peer-
to-peer lookup protocols are its simplicity, provable correctness,
and provable performance.
To clarify comparisons with related work, we will assume in

this section a Chord-based application that maps keys onto val-
ues. A value can be an address, a document, or an arbitrary
data item. A Chord-based application would store and find each
value at the node to which the value’s key maps.
DNS provides a lookup service, with host names as keys and

IP addresses (and other host information) as values. Chord could
provide the same service by hashing each host name to a key [7].
Chord-based DNS would require no special servers, while ordi-
nary DNS relies on a set of special root servers. DNS requires
manual management of the routing information (NS records)
that allows clients to navigate the name server hierarchy; Chord
automatically maintains the correctness of the analogous rout-
ing information. DNS only works well when host names are
structured to reflect administrative boundaries; Chord imposes
no naming structure. DNS is specialized to the task of finding
named hosts or services, while Chord can also be used to find



2

data objects that are not tied to particular machines.
The Freenet peer-to-peer storage system [5], [6], like Chord,

is decentralized and symmetric and automatically adapts when
hosts leave and join. Freenet does not assign responsibility for
documents to specific servers; instead, its lookups take the form
of searches for cached copies. This allows Freenet to provide a
degree of anonymity, but prevents it from guaranteeing retrieval
of existing documents or from providing low bounds on retrieval
costs. Chord does not provide anonymity, but its lookup oper-
ation runs in predictable time and always results in success or
definitive failure.
The Ohaha system uses a consistent hashing-like algorithm

map documents to nodes, and Freenet-style query routing [20].
As a result, it shares some of the weaknesses of Freenet.
Archival Intermemory uses an off-line computed tree to map
logical addresses to machines that store the data [4].
The Globe system [2] has a wide-area location service to map

object identifiers to the locations of moving objects. Globe
arranges the Internet as a hierarchy of geographical, topologi-
cal, or administrative domains, effectively constructing a static
world-wide search tree, much like DNS. Information about an
object is stored in a particular leaf domain, and pointer caches
provide search shortcuts [25]. The Globe system handles high
load on the logical root by partitioning objects among multi-
ple physical root servers using hash-like techniques. Chord per-
forms this hash function well enough that it can achieve scala-
bility without also involving any hierarchy, though Chord does
not exploit network locality as well as Globe.
The distributed data location protocol developed by Plaxton et

al. [21] is perhaps the closest algorithm to the Chord protocol.
The Tapestry lookup protocol [26], used in OceanStore [13], is
a variant of the Plaxton algorithm. Like Chord, it guarantees
that queries make no more than a logarithmic number of hops
and that keys are well-balanced. The Plaxton protocol’s main
advantage over Chord is that it ensures, subject to assumptions
about network topology, that queries never travel further in net-
work distance than the node where the key is stored. Chord,
on the other hand, is substantially less complicated and handles
concurrent node joins and failures well. Pastry [23] is a prefix-
based lookup protocol that has properties similar to Chord. Like
Tapestry, Pastry takes into account network topology to reduce
the routing latency. However, Pastry achieves this at the cost of
a more elaborated join protocol which initializes the routing ta-
ble of the new node by using the information from nodes along
the path traversed by the join message.
CAN uses a d-dimensional Cartesian coordinate space (for

some fixed d) to implement a distributed hash table that maps
keys onto values [22]. Each node maintains O(d) state, and the
lookup cost is O(dN 1/d). Thus, in contrast to Chord, the state
maintained by a CAN node does not depend on the network size
N , but the lookup cost increases faster than log N . If d = log N ,
CAN lookup times and storage needs match Chord’s. However,
CAN is not designed to vary d as N (and thus log N ) varies, so
this match will only occur for the “right” N corresponding to
the fixed d. CAN requires an additional maintenance protocol
to periodically remap the identifier space onto nodes. Chord
also has the advantage that its correctness is robust in the face of
partially incorrect routing information.

Chord’s routing procedure may be thought of as a one-
dimensional analogue of the Grid location system (GLS) [15].
GLS relies on real-world geographic location information to
route its queries; Chord maps its nodes to an artificial one-
dimensional space within which routing is carried out by an al-
gorithm similar to Grid’s.
Napster [18] and Gnutella [11] provide a lookup operation to

find data in a distributed set of peers. They search based on
user-supplied keywords, while Chord looks up data with unique
identifiers. Use of keyword search presents difficulties in both
systems. Napster uses a central index, resulting in a single point
of failure. Gnutella floods each query over the whole system,
so its communication and processing costs are high in large sys-
tems.
Chord has been used as a basis for a number of subsequent

research projects. The Chord File System (CFS) stores files
and meta-data in a peer-to-peer system, using Chord to lo-
cate storage blocks [9]. New analysis techniques have shown
that Chord’s stabilization algorithms (with minor modifications)
maintain good lookup performance despite continuous failure
and joining of nodes [16]. Chord has been evaluated as a tool to
serve DNS [7] and to maintain a distributed public key database
for secure name resolution [1].

III. SYSTEM MODEL

Chord simplifies the design of peer-to-peer systems and ap-
plications based on it by addressing these difficult problems:

• Load balance: Chord acts as a distributed hash function,
spreading keys evenly over the nodes; this provides a de-
gree of natural load balance.

• Decentralization: Chord is fully distributed: no node is
more important than any other. This improves robustness
and makes Chord appropriate for loosely-organized peer-
to-peer applications.

• Scalability: The cost of a Chord lookup grows as the log of
the number of nodes, so even very large systems are feasi-
ble. No parameter tuning is required to achieve this scaling.

• Availability: Chord automatically adjusts its internal ta-
bles to reflect newly joined nodes as well as node failures,
ensuring that, barring major failures in the underlying net-
work, the node responsible for a key can always be found.
This is true even if the system is in a continuous state of
change.

• Flexible naming: Chord places no constraints on the struc-
ture of the keys it looks up: the Chord key-space is flat.
This gives applications a large amount of flexibility in how
they map their own names to Chord keys.

The Chord software takes the form of a library to be linked
with the applications that use it. The application interacts with
Chord in two main ways. First, the Chord library provides a
lookup(key) function that yields the IP address of the node
responsible for the key. Second, the Chord software on each
node notifies the application of changes in the set of keys that
the node is responsible for. This allows the application software
to, for example, move corresponding values to their new homes
when a new node joins.
The application using Chord is responsible for providing any

desired authentication, caching, replication, and user-friendly
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Fig. 1. Structure of an example Chord-based distributed storage system.

naming of data. Chord’s flat key-space eases the implementa-
tion of these features. For example, an application could au-
thenticate data by storing it under a Chord key derived from a
cryptographic hash of the data. Similarly, an application could
replicate data by storing it under two distinct Chord keys derived
from the data’s application-level identifier.
The following are examples of applications for which Chord

can provide a good foundation:
Cooperative mirroring, in which multiple providers of
content cooperate to store and serve each others’ data. The
participants might, for example, be a set of software devel-
opment projects, each of which makes periodic releases.
Spreading the total load evenly over all participants’ hosts
lowers the total cost of the system, since each participant
need provide capacity only for the average load, not for that
participant’s peak load. Dabek et al. describe a realization
of this idea that uses Chord to map data blocks onto servers;
the application interacts with Chord achieve load balance,
data replication, and latency-based server selection [9].
Time-shared storage for nodes with intermittent connectiv-
ity. If someone wishes their data to be always available, but
their server is only occasionally available, they can offer to
store others’ data while they are connected, in return for
having their data stored elsewhere when they are discon-
nected. The data’s name can serve as a key to identify the
(live) Chord node responsible for storing the data item at
any given time. Many of the same issues arise as in the
cooperative mirroring application, though the focus here is
on availability rather than load balance.
Distributed indexes to support Gnutella- or Napster-like
keyword search. A key in this application could be derived
from the desired keywords, while values could be lists of
machines offering documents with those keywords.
Large-scale combinatorial search, such as code breaking.
In this case keys are candidate solutions to the problem
(such as cryptographic keys); Chord maps these keys to
the machines responsible for testing them as solutions.

We have built several peer-to-peer applications using Chord.
The structure of a typical application is shown in Figure 1. The
highest layer implements application-specific functions such as
file-system meta-data. The next layer implements a general-
purpose distributed hash table that multiple applications use to
insert and retrieve data blocks identified with unique keys. The
distributed hash table takes care of storing, caching, and replica-
tion of blocks. The distributed hash table uses Chord to identify

the node responsible for storing a block, and then communicates
with the block storage server on that node to read or write the
block.

IV. THE CHORD PROTOCOL

This section describes the Chord protocol. The Chord proto-
col specifies how to find the locations of keys, how new nodes
join the system, and how to recover from the failure (or planned
departure) of existing nodes. In this paper we assume that com-
munication in the underlying network is both symmetric (if A
can route to B, then B can route to A), and transitive (if A can
route to B and B can route to C, then A can route to C).

A. Overview

At its heart, Chord provides fast distributed computation of
a hash function mapping keys to nodes responsible for them.
Chord assigns keys to nodes with consistent hashing [12], [14],
which has several desirable properties. With high probability the
hash function balances load (all nodes receive roughly the same
number of keys). Also with high probability, when anN th node
joins (or leaves) the network, only aO(1/N) fraction of the keys
are moved to a different location—this is clearly the minimum
necessary to maintain a balanced load.
Chord improves the scalability of consistent hashing by

avoiding the requirement that every node know about every
other node. A Chord node needs only a small amount of “rout-
ing” information about other nodes. Because this information is
distributed, a node resolves the hash function by communicating
with other nodes. In an N -node network, each node maintains
information about only O(log N) other nodes, and a lookup re-
quires O(log N) messages.

B. Consistent Hashing

The consistent hash function assigns each node and key anm-
bit identifier using SHA-1 [10] as a base hash function. A node’s
identifier is chosen by hashing the node’s IP address, while a
key identifier is produced by hashing the key. We will use the
term “key” to refer to both the original key and its image under
the hash function, as the meaning will be clear from context.
Similarly, the term “node” will refer to both the node and its
identifier under the hash function. The identifier lengthm must
be large enough to make the probability of two nodes or keys
hashing to the same identifier negligible.
Consistent hashing assigns keys to nodes as follows. Iden-

tifiers are ordered on an identifier circle modulo 2m. Key k is
assigned to the first node whose identifier is equal to or follows
(the identifier of ) k in the identifier space. This node is called
the successor node of key k, denoted by successor(k). If iden-
tifiers are represented as a circle of numbers from 0 to 2m − 1,
then successor(k) is the first node clockwise from k. In the re-
mainder of this paper, we will also refer to the identifier circle
as the Chord ring.
Figure 2 shows a Chord ring withm = 6. The Chord ring has

10 nodes and stores five keys. The successor of identifier 10 is
node 14, so key 10 would be located at node 14. Similarly, keys
24 and 30 would be located at node 32, key 38 at node 38, and
key 54 at node 56.
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Fig. 2. An identifi er circle (ring) consisting of 10 nodes storing fi ve keys.

Consistent hashing is designed to let nodes enter and leave
the network with minimal disruption. To maintain the consistent
hashing mapping when a node n joins the network, certain keys
previously assigned to n’s successor now become assigned to
n. When node n leaves the network, all of its assigned keys are
reassigned to n’s successor. No other changes in assignment of
keys to nodes need occur. In the example above, if a node were
to join with identifier 26, it would capture the key with identifier
24 from the node with identifier 32.
The following results are proven in the papers that introduced

consistent hashing [12], [14]:
Theorem IV.1: For any set ofN nodes andK keys, with high

probability:
1. Each node is responsible for at most (1 + ϵ)K/N keys
2. When an (N + 1)st node joins or leaves the network, re-
sponsibility for O(K/N) keys changes hands (and only to
or from the joining or leaving node).

When consistent hashing is implemented as described above,
the theorem proves a bound of ϵ = O(log N). The consistent
hashing paper shows that ϵ can be reduced to an arbitrarily small
constant by having each node run Ω(log N) virtual nodes, each
with its own identifier. In the remainder of this paper, we will
analyze all bounds in terms of work per virtual node. Thus, if
each real node runs v virtual nodes, all bounds should be multi-
plied by v.
The phrase “with high probability” bears some discussion. A

simple interpretation is that the nodes and keys are randomly
chosen, which is plausible in a non-adversarial model of the
world. The probability distribution is then over random choices
of keys and nodes, and says that such a random choice is un-
likely to produce an unbalanced distribution. A similar model
is applied to analyze standard hashing. Standard hash functions
distribute data well when the set of keys being hashed is random.
When keys are not random, such a result cannot be guaranteed—
indeed, for any hash function, there exists some key set that is
terribly distributed by the hash function (e.g., the set of keys
that all map to a single hash bucket). In practice, such potential
bad sets are considered unlikely to arise. Techniques have also
been developed [3] to introduce randomness in the hash func-
tion; given any set of keys, we can choose a hash function at
random so that the keys are well distributed with high probabil-
ity over the choice of hash function. A similar technique can be
applied to consistent hashing; thus the “high probability’ claim
in the theorem above. Rather than select a random hash func-

tion, we make use of the SHA-1 hash which is expected to have
good distributional properties.
Of course, once the random hash function has been chosen,

an adversary can select a badly distributed set of keys for that
hash function. In our application, an adversary can generate a
large set of keys and insert into the Chord ring only those keys
that map to a particular node, thus creating a badly distributed
set of keys. As with standard hashing, however, we expect that a
non-adversarial set of keys can be analyzed as if it were random.
Using this assumption, we state many of our results below as
“high probability” results.

C. Simple Key Location
This section describes a simple but slow Chord lookup al-

gorithm. Succeeding sections will describe how to extend the
basic algorithm to increase efficiency, and how to maintain the
correctness of Chord’s routing information.
Lookups could be implemented on a Chord ring with little

per-node state. Each node need only know how to contact its
current successor node on the identifier circle. Queries for a
given identifier could be passed around the circle via these suc-
cessor pointers until they encounter a pair of nodes that straddle
the desired identifier; the second in the pair is the node the query
maps to.
Figure 3(a) shows pseudocode that implements simple key

lookup. Remote calls and variable references are preceded by
the remote node identifier, while local variable references and
procedure calls omit the local node. Thus n.foo() denotes a re-
mote procedure call of procedure foo on node n, while n.bar,
without parentheses, is an RPC to fetch a variable bar from
node n. The notation (a, b] denotes the segment of the Chord
ring obtained by moving clockwise from (but not including) a
until reaching (and including) b.
Figure 3(b) shows an example in which node 8 performs a

lookup for key 54. Node 8 invokes find successor for key 54
which eventually returns the successor of that key, node 56. The
query visits every node on the circle between nodes 8 and 56.
The result returns along the reverse of the path followed by the
query.

D. Scalable Key Location
The lookup scheme presented in the previous section uses a

number of messages linear in the number of nodes. To accelerate
lookups, Chord maintains additional routing information. This
additional information is not essential for correctness, which is
achieved as long as each node knows its correct successor.
As before, letm be the number of bits in the key/node identi-

fiers. Each node nmaintains a routing table with up tom entries
(we will see that in fact only O(log n) are distinct), called the
finger table. The ith entry in the table at node n contains the
identity of the first node s that succeeds n by at least 2i−1 on the
identifier circle, i.e., s = successor(n+2i−1), where 1 ≤ i ≤ m
(and all arithmetic is modulo 2m). We call node s the ith finger
of node n, and denote it by n.finger[i] (see Table I). A finger
table entry includes both the Chord identifier and the IP address
(and port number) of the relevant node. Note that the first finger
of n is the immediate successor of n on the circle; for conve-
nience we often refer to the first finger as the successor.
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// ask node n to fi nd the successor of id
n.find successor(id)
if (id ∈ (n, successor])
return successor;

else
// forward the query around the circle
return successor.fi nd successor(id);

(a)

lookup(K54)

N8

N14

N38

N42

N51

N48

N21

N32

N56K54

N1

(b)

Fig. 3. (a) Simple (but slow) pseudocode to fi nd the successor node of an identifi er id. Remote procedure calls and variable lookups are preceded by the remote
node. (b) The path taken by a query from node 8 for key 54, using the pseudocode in Figure 3(a).
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(b)
Fig. 4. (a) The fi nger table entries for node 8. (b) The path a query for key 54 starting at node 8, using the algorithm in Figure 5.

Notation Defi nition
finger[k] first node on circle that succeeds (n +

2k−1) mod 2m, 1 ≤ k ≤ m
successor the next node on the identifier circle;

finger[1].node
predecessor the previous node on the identifier circle

TABLE I
Defi nition of variables for node n, usingm-bit identifi ers.

The example in Figure 4(a) shows the finger table of node 8.
The first finger of node 8 points to node 14, as node 14 is the
first node that succeeds (8 + 20) mod 26 = 9. Similarly, the last
finger of node 8 points to node 42, as node 42 is the first node
that succeeds (8 + 25) mod 26 = 40.
This scheme has two important characteristics. First, each

node stores information about only a small number of other
nodes, and knows more about nodes closely following it on the
identifier circle than about nodes farther away. Second, a node’s
finger table generally does not contain enough information to
directly determine the successor of an arbitrary key k. For ex-
ample, node 8 in Figure 4(a) cannot determine the successor of
key 34 by itself, as this successor (node 38) does not appear in
node 8’s finger table.
Figure 5 shows the pseudocode of the find successor opera-

// ask node n to fi nd the successor of id
n.find successor(id)
if (id ∈ (n, successor])
return successor;

else
n′ = closest preceding node(id);
return n′.fi nd successor(id);

// search the local table for the highest predecessor of id
n.closest preceding node(id)
for i = m downto 1
if (fi nger[i] ∈ (n, id))
return fi nger[i];

return n;

Fig. 5. Scalable key lookup using the fi nger table.

tion, extended to use finger tables. If id falls between n and
its successor, find successor is finished and node n returns its
successor. Otherwise, n searches its finger table for the node
n′ whose ID most immediately precedes id, and then invokes
find successor at n′. The reason behind this choice of n′ is that
the closer n′ is to id, the more it will know about the identifier
circle in the region of id.
As an example, consider the Chord circle in Figure 4(b), and

suppose node 8 wants to find the successor of key 54. Since the
largest finger of node 8 that precedes 54 is node 42, node 8 will
ask node 42 to resolve the query. In turn, node 42will determine
the largest finger in its finger table that precedes 54, i.e., node
51. Finally, node 51 will discover that its own successor, node
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56, succeeds key 54, and thus will return node 56 to node 8.
Since each node has finger entries at power of two intervals

around the identifier circle, each node can forward a query at
least halfway along the remaining distance between the node
and the target identifier. From this intuition follows a theorem:
Theorem IV.2: With high probability, the number of nodes

that must be contacted to find a successor in anN -node network
is O(log N).

Proof: Suppose that node n wishes to resolve a query for
the successor of k. Let p be the node that immediately precedes
k. We analyze the number of query steps to reach p.
Recall that if n ̸= p, then n forwards its query to the closest

predecessor of k in its finger table. Consider the i such that
node p is in the interval [n + 2i−1, n + 2i). Since this interval is
not empty (it contains p), node n will contact its ith finger, the
first node f in this interval. The distance (number of identifiers)
between n and f is at least 2i−1. But f and p are both in the
interval [n + 2i−1, n + 2i), which means the distance between
them is at most 2i−1. This means f is closer to p than to n,
or equivalently, that the distance from f to p is at most half the
distance from n to p.
If the distance between the node handling the query and the

predecessor p halves in each step, and is at most 2m initially,
then within m steps the distance will be one, meaning we have
arrived at p.
In fact, as discussed above, we assume that node and key iden-

tifiers are random. In this case, the number of forwardings nec-
essary will be O(log N) with high probability. After 2 logN
forwardings, the distance between the current query node and
the key k will be reduced to at most 2m/N2. The probability
that any other node is in this interval is at most 1/N , which is
negligible. Thus, the next forwarding step will find the desired
node.
In the section reporting our experimental results (Section V),
we will observe (and justify) that the average lookup time is
1
2

log N .
Although the finger table contains room form entries, in fact

only O(log N) fingers need be stored. As we just argued in the
above proof, no node is likely to be within distance 2m/N2 of
any other node. Thus, the ith finger of the node, for any i ≤
m − 2 logN , will be equal to the node’s immediate successor
with high probability and need not be stored separately.

E. Dynamic Operations and Failures

In practice, Chord needs to deal with nodes joining the sys-
tem and with nodes that fail or leave voluntarily. This section
describes how Chord handles these situations.

E.1 Node Joins and Stabilization

In order to ensure that lookups execute correctly as the set
of participating nodes changes, Chord must ensure that each
node’s successor pointer is up to date. It does this using a “stabi-
lization” protocol that each node runs periodically in the back-
ground and which updates Chord’s finger tables and successor
pointers.
Figure 6 shows the pseudocode for joins and stabilization.

When node n first starts, it calls n.join(n′), where n′ is any

// create a new Chord ring.
n.create()

predecessor = nil;
successor = n;

// join a Chord ring containing node n′.
n.join(n′)

predecessor = nil;
successor = n′.fi nd successor(n);

// called periodically. verifi es n’s immediate
// successor, and tells the successor about n.
n.stabilize()

x = successor.predecessor;
if (x ∈ (n, successor))

successor = x;
successor.notify(n);

// n′ thinks it might be our predecessor.
n.notify(n′)
if (predecessor is nil or n′ ∈ (predecessor, n))

predecessor = n′;

// called periodically. refreshes fi nger table entries.
// next stores the index of the next fi nger to fi x.
n.fix fingers()

next = next + 1 ;
if (next > m)

next = 1 ;
fi nger[next ] = fi nd successor(n + 2next−1 );

// called periodically. checks whether predecessor has failed.
n.check predecessor()
if (predecessor has failed)

predecessor = nil;

Fig. 6. Pseudocode for stabilization.

known Chord node, or n.create() to create a new Chord net-
work. The join() function asks n′ to find the immediate succes-
sor of n. By itself, join() does not make the rest of the network
aware of n.
Every node runs stabilize() periodically to learn about newly

joined nodes. Each time node n runs stabilize(), it asks its suc-
cessor for the successor’s predecessor p, and decides whether p
should be n’s successor instead. This would be the case if node p
recently joined the system. In addition, stabilize() notifies node
n’s successor of n’s existence, giving the successor the chance
to change its predecessor to n. The successor does this only if it
knows of no closer predecessor than n.
Each node periodically calls fix fingers to make sure its fin-

ger table entries are correct; this is how new nodes initial-
ize their finger tables, and it is how existing nodes incorpo-
rate new nodes into their finger tables. Each node also runs
check predecessor periodically, to clear the node’s predecessor
pointer if n.predecessor has failed; this allows it to accept a new
predecessor in notify .
As a simple example, suppose node n joins the system, and

its ID lies between nodes np and ns. In its call to join(), n ac-
quires ns as its successor. Node ns, when notified by n, acquires
n as its predecessor. When np next runs stabilize(), it asks ns

for its predecessor (which is now n); np then acquires n as its
successor. Finally, np notifies n, and n acquires np as its pre-
decessor. At this point, all predecessor and successor pointers
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are correct. At each step in the process, ns is reachable from
np using successor pointers; this means that lookups concurrent
with the join are not disrupted. Figure 7 illustrates the join pro-
cedure, when n’s ID is 26, and the IDs of ns and np are 21 and
32, respectively.
As soon as the successor pointers are correct, calls to

find successor() will reflect the new node. Newly-joined nodes
that are not yet reflected in other nodes’ finger tables may
cause find successor() to initially undershoot, but the loop in the
lookup algorithm will nevertheless follow successor (finger[1])
pointers through the newly-joined nodes until the correct pre-
decessor is reached. Eventually fix fingers() will adjust finger
table entries, eliminating the need for these linear scans.
The following result, proved in [24], shows that the inconsis-

tent state caused by concurrent joins is transient.
Theorem IV.3: If any sequence of join operations is executed

interleaved with stabilizations, then at some time after the last
join the successor pointers will form a cycle on all the nodes in
the network.
In other words, after some time each node is able to reach any

other node in the network by following successor pointers.
Our stabilization scheme guarantees to add nodes to a Chord

ring in a way that preserves reachability of existing nodes, even
in the face of concurrent joins and lost and reordered messages.
This stabilization protocol by itself won’t correct a Chord sys-
tem that has split into multiple disjoint cycles, or a single cy-
cle that loops multiple times around the identifier space. These
pathological cases cannot be produced by any sequence of or-
dinary node joins. If produced, these cases can be detected and
repaired by periodic sampling of the ring topology [24].

E.2 Impact of Node Joins on Lookups
In this section, we consider the impact of node joins on

lookups. We first consider correctness. If joining nodes affect
some region of the Chord ring, a lookup that occurs before sta-
bilization has finished can exhibit one of three behaviors. The
common case is that all the finger table entries involved in the
lookup are reasonably current, and the lookup finds the correct
successor in O(log N) steps. The second case is where succes-
sor pointers are correct, but fingers are inaccurate. This yields
correct lookups, but they may be slower. In the final case, the
nodes in the affected region have incorrect successor pointers,
or keys may not yet have migrated to newly joined nodes, and
the lookup may fail. The higher-layer software using Chord will
notice that the desired data was not found, and has the option of
retrying the lookup after a pause. This pause can be short, since
stabilization fixes successor pointers quickly.
Now let us consider performance. Once stabilization has

completed, the new nodes will have no effect beyond increasing
the N in the O(log N) lookup time. If stabilization has not yet
completed, existing nodes’ finger table entries may not reflect
the new nodes. The ability of finger entries to carry queries long
distances around the identifier ring does not depend on exactly
which nodes the entries point to; the distance halving argument
depends only on ID-space distance. Thus the fact that finger
table entries may not reflect new nodes does not significantly af-
fect lookup speed. The main way in which newly joined nodes
can influence lookup speed is if the new nodes’ IDs are between

the target’s predecessor and the target. In that case the lookup
will have to be forwarded through the intervening nodes, one at
a time. But unless a tremendous number of nodes joins the sys-
tem, the number of nodes between two old nodes is likely to be
very small, so the impact on lookup is negligible. Formally, we
can state the following result. We call a Chord ring stable if all
its successor and finger pointers are correct.
Theorem IV.4: If we take a stable network withN nodes with

correct finger pointers, and another set of up toN nodes joins the
network, and all successor pointers (but perhaps not all finger
pointers) are correct, then lookups will still take O(log N) time
with high probability.

Proof: The original set of fingers will, in O(log N) time,
bring the query to the old predecessor of the correct node. With
high probability, at mostO(log N) new nodes will land between
any two old nodes. So onlyO(log N) new nodes will need to be
traversed along successor pointers to get from the old predeces-
sor to the new predecessor.
More generally, as long as the time it takes to adjust fingers is

less than the time it takes the network to double in size, lookups
will continue to take O(log N) hops. We can achieve such ad-
justment by repeatedly carrying out lookups to update our fin-
gers. It follows that lookups perform well so long as Ω(log2 N)
rounds of stabilization happen between any N node joins.

E.3 Failure and Replication
The correctness of the Chord protocol relies on the fact that

each node knows its successor. However, this invariant can be
compromised if nodes fail. For example, in Figure 4, if nodes
14, 21, and 32 fail simultaneously, node 8 will not know that
node 38 is now its successor, since it has no finger pointing to 38.
An incorrect successor will lead to incorrect lookups. Consider
a query for key 30 initiated by node 8. Node 8 will return node
42, the first node it knows about from its finger table, instead of
the correct successor, node 38.
To increase robustness, each Chord node maintains a succes-

sor list of size r, containing the node’s first r successors. If
a node’s immediate successor does not respond, the node can
substitute the second entry in its successor list. All r successors
would have to simultaneously fail in order to disrupt the Chord
ring, an event that can be made very improbable with modest
values of r. Assuming each node fails independently with prob-
ability p, the probability that all r successors fail simultaneously
is only pr. Increasing r makes the system more robust.
Handling the successor list requires minor changes in the

pseudocode in Figures 5 and 6. A modified version of the stabi-
lize procedure in Figure 6 maintains the successor list. Succes-
sor lists are stabilized as follows: node n reconciles its list with
its successor s by copying s’s successor list, removing its last
entry, and prepending s to it. If node n notices that its successor
has failed, it replaces it with the first live entry in its successor
list and reconciles its successor list with its new successor. At
that point, n can direct ordinary lookups for keys for which the
failed node was the successor to the new successor. As time
passes, fix fingers and stabilize will correct finger table entries
and successor list entries pointing to the failed node.
A modified version of the closest preceding node procedure

in Figure 5 searches not only the finger table but also the succes-
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Fig. 7. Example illustrating the join operation. Node 26 joins the system between nodes 21 and 32. The arcs represent the successor relationship. (a) Initial state:
node 21 points to node 32; (b) node 26 fi nds its successor (i.e., node 32) and points to it; (c) node 26 copies all keys less than 26 from node 32; (d) the stabilize
procedure updates the successor of node 21 to node 26.

sor list for the most immediate predecessor of id. In addition,
the pseudocode needs to be enhanced to handle node failures.
If a node fails during the find successor procedure, the lookup
proceeds, after a timeout, by trying the next best predecessor
among the nodes in the finger table and the successor list.
The following results quantify the robustness of the Chord

protocol, by showing that neither the success nor the perfor-
mance of Chord lookups is likely to be affected even by massive
simultaneous failures. Both theorems assume that the successor
list has length r = Ω(log N).
Theorem IV.5: If we use a successor list of length r =

Ω(log N) in a network that is initially stable, and then ev-
ery node fails with probability 1/2, then with high probability
find successor returns the closest living successor to the query
key.

Proof: Before any nodes fail, each node was aware of its r
immediate successors. The probability that all of these succes-
sors fail is (1/2)r, so with high probability every node is aware
of its immediate living successor. As was argued in the previous
section, if the invariant that every node is aware of its immediate
successor holds, then all queries are routed properly, since every
node except the immediate predecessor of the query has at least
one better node to which it will forward the query.
Theorem IV.6: In a network that is initially stable, if every

node then fails with probability 1/2, then the expected time to
execute find successor is O(log N).

Proof: Due to space limitations we omit the proof of this
result, which can be found in the technical report [24].
Under some circumstances the preceding theorems may ap-

ply to malicious node failures as well as accidental failures. An
adversary may be able to make some set of nodes fail, but have
no control over the choice of the set. For example, the adversary
may be able to affect only the nodes in a particular geographi-
cal region, or all the nodes that use a particular access link, or all
the nodes that have a certain IP address prefix. As was discussed
above, because Chord node IDs are generated by hashing IP ad-
dresses, the IDs of these failed nodes will be effectively random,
just as in the failure case analyzed above.
The successor list mechanism also helps higher-layer soft-

ware replicate data. A typical application using Chord might
store replicas of the data associated with a key at the k nodes
succeeding the key. The fact that a Chord node keeps track of

its r successors means that it can inform the higher layer soft-
ware when successors come and go, and thus when the software
should propagate data to new replicas.

E.4 Voluntary Node Departures
Since Chord is robust in the face of failures, a node voluntar-

ily leaving the system could be treated as a node failure. How-
ever, two enhancements can improve Chord performance when
nodes leave voluntarily. First, a node n that is about to leave
may transfer its keys to its successor before it departs. Second,
n may notify its predecessor p and successor s before leaving.
In turn, node p will remove n from its successor list, and add
the last node in n’s successor list to its own list. Similarly, node
s will replace its predecessor with n’s predecessor. Here we as-
sume that n sends its predecessor to s, and the last node in its
successor list to p.

F. More Realistic Analysis
Our analysis above gives some insight into the behavior of

the Chord system, but is inadequate in practice. The theorems
proven above assume that the Chord ring starts in a stable state
and then experiences joins or failures. In practice, a Chord ring
will never be in a stable state; instead, joins and departures will
occur continuously, interleaved with the stabilization algorithm.
The ring will not have time to stabilize before new changes hap-
pen. The Chord algorithms can be analyzed in this more general
setting. Other work [16] shows that if the stabilization protocol
is run at a certain rate (dependent on the rate at which nodes join
and fail) then the Chord ring remains continuously in an “almost
stable” state in which lookups are fast and correct.

V. SIMULATION RESULTS
In this section, we evaluate the Chord protocol by simula-

tion. The packet-level simulator uses the lookup algorithm in
Figure 5, extended with the successor lists described in Sec-
tion IV-E.3, and the stabilization algorithm in Figure 6.

A. Protocol Simulator
The Chord protocol can be implemented in an iterative or re-

cursive style. In the iterative style, a node resolving a lookup
initiates all communication: it asks a series of nodes for infor-
mation from their finger tables, each time moving closer on the
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Chord ring to the desired successor. In the recursive style, each
intermediate node forwards a request to the next node until it
reaches the successor. The simulator implements the Chord pro-
tocol in an iterative style.
During each stabilization step, a node updates its immediate

successor and one other entry in its successor list or finger ta-
ble. Thus, if a node’s successor list and finger table contain a
total of k unique entries, each entry is refreshed once every k
stabilization rounds. Unless otherwise specified, the size of the
successor list is one, that is, a node knows only its immediate
successor. In addition to the optimizations described on Sec-
tion IV-E.4, the simulator implements one other optimization.
When the predecessor of a node n changes, n notifies its old
predecessor p about the new predecessor p′. This allows p to
set its successor to p′ without waiting for the next stabilization
round.
The delay of each packet is exponentially distributed with

mean of 50 milliseconds. If a node n cannot contact another
node n′ within 500 milliseconds, n concludes that n′ has left or
failed. If n′ is an entry in n’s successor list or finger table, this
entry is removed. Otherwise n informs the node from which
it learnt about n′ that n′ is gone. When a node on the path of
a lookup fails, the node that initiated the lookup tries to make
progress using the next closest finger preceding the target key.
A lookup is considered to have succeeded if it reaches the cur-

rent successor of the desired key. This is slightly optimistic: in a
real system, there might be periods of time in which the real suc-
cessor of a key has not yet acquired the data associated with the
key from the previous successor. However, this method allows
us to focus on Chord’s ability to perform lookups, rather than on
the higher-layer software’s ability to maintain consistency of its
own data.

B. Load Balance

We first consider the ability of consistent hashing to allocate
keys to nodes evenly. In a network withN nodes andK keys we
would like the distribution of keys to nodes to be tight around
N/K .
We consider a network consisting of 104 nodes, and vary the

total number of keys from 105 to 106 in increments of 105. For
each number of keys, we run 20 experiments with different ran-
dom number generator seeds, counting the number of keys as-
signed to each node in each experiment. Figure 8(a) plots the
mean and the 1st and 99th percentiles of the number of keys
per node. The number of keys per node exhibits large variations
that increase linearly with the number of keys. For example, in
all cases some nodes store no keys. To clarify this, Figure 8(b)
plots the probability density function (PDF) of the number of
keys per node when there are 5 × 105 keys stored in the net-
work. The maximum number of nodes stored by any node in
this case is 457, or 9.1× the mean value. For comparison, the
99th percentile is 4.6× the mean value.
One reason for these variations is that node identifiers do not

uniformly cover the entire identifier space. From the perspective
of a single node, the amount of the ring it “owns” is determined
by the distance to its immediate predecessor. The distance to
each of the other n − 1 nodes is uniformly distributed over the
range [0, m], and we are interested in the minimum of these dis-
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Fig. 9. The 1st and the 99th percentiles of the number of keys per node as a
function of virtual nodes mapped to a real node. The network has 104 real
nodes and stores 106 keys.

tance. It is a standard fact that the distribution of this minimum
is tightly approximated by an exponential distribution with mean
2m/N . Thus, for example, the owned region exceeds twice the
average value (of 2m/N ) with probability e−2.
Chord makes the number of keys per node more uniform by

associating keys with virtual nodes, and mapping multiple vir-
tual nodes (with unrelated identifiers) to each real node. This
provides a more uniform coverage of the identifier space. For
example, if we allocate log N randomly chosen virtual nodes to
each real node, with high probability each of the N bins will
contain O(log N) virtual nodes [17].
To verify this hypothesis, we perform an experiment in which

we allocate r virtual nodes to each real node. In this case keys
are associated with virtual nodes instead of real nodes. We con-
sider again a network with 104 real nodes and 106 keys. Figure 9
shows the 1st and 99th percentiles for r = 1, 2, 5, 10, and 20, re-
spectively. As expected, the 99th percentile decreases, while the
1st percentile increases with the number of virtual nodes, r. In
particular, the 99th percentile decreases from 4.8× to 1.6× the
mean value, while the 1st percentile increases from 0 to 0.5× the
mean value. Thus, adding virtual nodes as an indirection layer
can significantly improve load balance. The tradeoff is that each
real node now needs r times as much space to store the finger
tables for its virtual nodes.
We make several observations with respect to the complex-

ity incurred by this scheme. First, the asymptotic value of the
query path length, which now becomes O(log(N log N)) =
O(log N), is not affected. Second, the total identifier space cov-
ered by the virtual nodes1 mapped on the same real node is with
high probability an O(1/N) fraction of the total, which is the
same on average as in the absence of virtual nodes. Since the
number of queries handled by a node is roughly proportional to
the total identifier space covered by that node, the worst-case
number of queries handled by a node does not change. Third,
while the routing state maintained by a node is nowO(log2 N),
this value is still reasonable in practice; for N = 106, log2 N
is only 400. Finally, while the number of control messages ini-

1The identifi er space covered by a virtual node represents the interval between
the node’s identifi er and the identifi er of its predecessor. The identifi er space
covered by a real node is the sum of the identifi er spaces covered by its virtual
nodes.



10

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100

N
um

be
r o

f k
ey

s 
pe

r n
od

e

Total number of keys (x 10,000)

1st and 99th percentiles

(a)

0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300 350 400 450 500

PD
F

Number of keys per node

(b)
Fig. 8. (a) The mean and 1st and 99th percentiles of the number of keys stored per node in a 104 node network. (b) The probability density function (PDF) of the

number of keys per node. The total number of keys is 5 × 105.

tiated by a node increases by a factor of O(log N), the asymp-
totic number of control messages received from other nodes is
not affected. To see why is this, note that in the absence of vir-
tual nodes, with “reasonable” probability a real node is respon-
sible for O(log N/N) of the identifier space. Since there are
O(N log N) fingers in the entire system, the number of fingers
that point to a real node is O(log2 N). In contrast, if each real
node maps log N virtual nodes, with high probability each real
node is responsible for O(1/N) of the identifier space. Since
there are O(N log2 N) fingers in the entire system, with high
probability the number of fingers that point to the virtual nodes
mapped on the same real node is still O(log2 N).

C. Path Length

Chord’s performance depends in part on the number of nodes
that must be visited to resolve a query. From Theorem IV.2, with
high probability, this number is O(log N), where N is the total
number of nodes in the network.
To understand Chord’s routing performance in practice, we

simulated a network with N = 2k nodes, storing 100× 2k keys
in all. We varied k from 3 to 14 and conducted a separate ex-
periment for each value. Each node in an experiment picked a
random set of keys to query from the system, and we measured
each query’s path length.
Figure 10(a) plots the mean, and the 1st and 99th percentiles

of path length as a function of k. As expected, the mean path
length increases logarithmically with the number of nodes, as
do the 1st and 99th percentiles. Figure 10(b) plots the PDF of
the path length for a network with 212 nodes (k = 12).
Figure 10(a) shows that the path length is about 1

2
log2 N .

The value of the constant term ( 1
2
) can be understood as fol-

lows. Consider a node making a query for a randomly chosen
key. Represent the distance in identifier space between node and
key in binary. The most significant (say ith) bit of this distance
can be corrected to 0 by following the node’s ith finger. If the
next significant bit of the distance is 1, it too needs to be cor-
rected by following a finger, but if it is 0, then no i − 1st finger
is followed—instead, we move on the the i−2nd bit. In general,
the number of fingers we need to follow will be the number of
ones in the binary representation of the distance from node to
query. Since the node identifiers are randomly distributed, we

expect half the of the bits to be ones. As discussed in Theorem
IV.2, after the log N most-significant bits have been fixed, in ex-
pectation there is only one node remaining between the current
position and the key. Thus the average path length will be about
1
2

log2 N .

D. Simultaneous Node Failures

In this experiment, we evaluate the impact of a massive fail-
ure on Chord’s performance and on its ability to perform correct
lookups. We consider a network with N = 1,000 nodes, where
each node maintains a successor list of size r = 20 = 2 log2 N
(see Section IV-E.3 for a discussion on the size of the succes-
sor list). Once the network becomes stable, each node is made
to fail with probability p. After the failures occur, we perform
10,000 random lookups. For each lookup, we record the num-
ber of timeouts experienced by the lookup, the number of nodes
contacted during the lookup (including attempts to contact failed
nodes), and whether the lookup found the key’s true current suc-
cessor. A timeout occurs when a node tries to contact a failed
node. The number of timeouts experienced by a lookup is equal
to the number of failed nodes encountered by the lookup oper-
ation. To focus the evaluation on Chord’s performance imme-
diately after failures, before it has a chance to correct its tables,
these experiments stop stabilization just before the failures oc-
cur and do not remove the fingers pointing to failed nodes from
the finger tables. Thus the failed nodes are detected only when
they fail to respond during the lookup protocol.
Table II shows the mean, and the 1st and the 99th percentiles

of the path length for the first 10,000 lookups after the failure
occurs as a function of p, the fraction of failed nodes. As ex-
pected, the path length and the number of timeouts increases as
the fraction of nodes that fail increases.
To interpret these results better, we next estimate the mean

path length of a lookup when each node has a successor list of
size r. By an argument similar to the one used in Section V-
C, a successor list of size r eliminates the last 1

2
log2 r hops

from the lookup path on average. The mean path length of a
lookup becomes then 1

2
log2 N − 1

2
log2 r +1. The last term (1)

accounts for accessing the predecessor of the queried key once
this predecessor is found in the successor list of the previous
node. ForN = 1, 000 and r = 20, the mean path length is 3.82,
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Fraction of Mean path length Mean num. of timeouts
failed nodes (1st, 99th percentiles) (1st, 99th percentiles)

0 3.84 (2, 5) 0.0 (0, 0)
0.1 4.03 (2, 6) 0.60 (0, 2)
0.2 4.22 (2, 6) 1.17 (0, 3)
0.3 4.44 (2, 6) 2.02 (0, 5)
0.4 4.69 (2, 7) 3.23 (0, 8)
0.5 5.09 (3, 8) 5.10 (0, 11)

TABLE II
The path length and the number of timeouts experienced by a lookup as

function of the fraction of nodes that fail simultaneously. The 1st and the 99th
percentiles are in parenthesis. Initially, the network has 1,000 nodes.

which is very close to the value of 3.84 shown in Table II for
p = 0.
Let x denote the progress made in the identifier space towards

a target key during a particular lookup iteration, when there are
no failures in the system. Next, assume that each node fails
independently with probability p. As discussed in Section IV-
E.3, during each lookup iteration every node selects the largest
alive finger (from its finger table) that precedes the target key.
Thus the progress made during the same lookup iteration in the
identifier space is x with probability (1 − p), roughly x/2 with
probability p ∗ (1− p), roughly x/22 with probability p2 ∗ (1 −
p), and so on. The expected progress made towards the target
key is then

∑

∞

i=0
x
2i (1 − p)pi = x(1 − p)/(1 − p/2). As a

result, the mean path length becomes approximately 1
2

logd N −
1
2

logd r + 1, where d = 1.7 = log2

(

1−p/2
1−p

)

. As an example,
the mean path length for p = 0.5 is 5.76. One reason for which
the predicted value is larger than the measured value in Table II
is because the series used to evaluate d is finite in practice. This
leads us to underestimating the value of d, which in turn leads
us to overestimating the mean path length.
Now, let us turn our attention to the number of timeouts. Let

m be the mean number of nodes contacted during a lookup
operation. The expected number of timeouts experienced dur-
ing a lookup operation is m ∗ p, and the mean path length is
l = m ∗ (1− p). Given the mean path length in Table II, the ex-
pected number of timeouts is 0.45 for p = 0.1, 1.06 for p = 0.2,
1.90 for p = 0.3, 3.13 for p = 0.4, and 5.06 for p = 0.5. These

values match well the measured number of timeouts shown in
Table II.
Finally, we note that in our simulations all lookups were suc-

cessfully resolved, which supports the robustness claim of The-
orem IV.5.

E. Lookups During Stabilization

In this experiment, we evaluate the performance and accu-
racy of Chord lookups when nodes are continuously joining and
leaving. The leave procedure uses the departure optimizations
outlined in Section IV-E.4. Key lookups are generated accord-
ing to a Poisson process at a rate of one per second. Joins and
voluntary leaves are modeled by a Poisson process with a mean
arrival rate of R. Each node runs the stabilization routine at
intervals that are uniformly distributed in the interval [15, 45]
seconds; recall that only the successor and one finger table en-
try are stabilized for each call, so the expected interval between
successive stabilizations of a given finger table entry is much
longer than the average stabilization period of 30 seconds. The
network starts with 1,000 nodes, and each node maintains again
a successor list of size r = 20 = 2 log2 N . Note that even
though there are no failures, timeouts may still occur during the
lookup operation; a node that tries to contact a finger that has
just left will time out.
Table III shows the means and the 1st and 90th percentiles of

the path length and the number of timeouts experienced by the
lookup operation as a function of the rate R at which nodes join
and leave. A rate R = 0.05 corresponds to one node joining
and leaving every 20 seconds on average. For comparison, re-
call that each node invokes the stabilize protocol once every 30
seconds. Thus, R ranges from a rate of one join and leave per
1.5 stabilization periods to a rate of 12 joins and 12 leaves per
one stabilization period.
As discussed in Section V-D, the mean path length in steady

state is about 1
2

log2 N − 1
2

log2 r + 1. Again, since N = 1,000
and r = 20, the mean path length is 3.82. As shown in Table III,
the measured path length is very close to this value and does not
change dramatically as R increases. This is because the number
of timeouts experienced by a lookup is relatively small, and thus
it has minimal effect on the path length. On the other hand, the
number of timeouts increases with R. To understand this result,
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Node join/leave rate Mean path length Mean num. of timeouts Lookup failures
(per second/per stab. period) (1st, 99th percentiles) (1st, 99th percentiles) (per 10,000 lookups)

0.05 / 1.5 3.90 (1, 9) 0.05 (0, 2) 0
0.10 / 3 3.83 (1, 9) 0.11 (0, 2) 0
0.15 / 4.5 3.84 (1, 9) 0.16 (0, 2) 2
0.20 / 6 3.81 (1, 9) 0.23 (0, 3) 5
0.25 / 7.5 3.83 (1, 9) 0.30 (0, 3) 6
0.30 / 9 3.91 (1, 9) 0.34 (0, 4) 8
0.35 / 10.5 3.94 (1, 10) 0.42 (0, 4) 16
0.40 / 12 4.06 (1, 10) 0.46 (0, 5) 15

TABLE III
The path length and the number of timeouts experienced by a lookup as function of node join and leave rates. The 1st and the 99th percentiles are in parentheses.

The network has roughly 1,000 nodes.

consider the following informal argument.
Let us consider a particular finger pointer f from node n and

evaluate the fraction of lookup traversals of that finger that en-
counter a timeout (by symmetry, this will be the same for all fin-
gers). From the perspective of that finger, history is made up of
an interleaving of three types of events: (1) stabilizations of that
finger, (2) departures of the node pointed at by the finger, and
(3) lookups that traverse the finger. A lookup causes a timeout if
the finger points at a departed node. This occurs precisely when
the event immediately preceding the lookup was a departure—if
the preceding event was a stabilization, then the node currently
pointed at is alive; similarly, if the previous event was a lookup,
then that lookup timed out an caused eviction of that dead fin-
ger pointer. So we need merely determine the fraction of lookup
events in the history that are immediately preceded by a depar-
ture event.
To simplify the analysis we assume that, like joins and leaves,

stabilization is run according to a Poisson process. Our history
is then an interleaving of three Poisson processes. The fingered
node departs as a Poisson process at rate R′ = R/N . Stabiliza-
tion of that finger occurs (and detects such a departure) at rate S.
In each stabilization round, a node stabilizes either a node in its
finger table or a node in its successor list (there are 3 logN such
nodes in our case). Since the stabilization operation reduces to
a lookup operation (see Figure 6), each stabilization operation
will use l fingers on the average, where l is the mean lookup path
length.2 As result, the rate at which a finger is touched by the
stabilization operation is S = (1/30) ∗ l/(3 logN) where 1/30
is the average rate at which each node invokes stabilization. Fi-
nally, lookups using that finger are also a Poisson process. Re-
call that lookups are generated (globally) as a Poisson process
with rate of one lookup per second. Each such lookup uses l fin-
gers on average, while there areN log N fingers in total. Thus a
particular finger is used with probability l/(N log N), meaning
that the finger gets used according to a Poisson process at rate
L = l/(N log N).
We have three interleaved Poisson processes (the lookups, de-

partures, and stabilizations). Such a union of Poisson processes
is itself a Poisson process with rate equal to the sum of the three

2Actually, since 2 log N of the nodes belong to the successor list, the mean
path length of the stabilization operation is smaller than the the mean path length
of the lookup operation (assuming the requested keys are randomly distributed).
This explains in part the underestimation bias in our computation.

underlying rates. Each time an “event” occurs in this union
process, it is assigned to one of the three underlying processes
with probability proportional to those processes rates. In other
words, the history seen by a node looks like a random sequence
in which each event is a departure with probability

pt =
R′

R′ + S + L
=

R
N

R
N + l

90 log N + l
N log N

=
R

R + l∗N
90 log N + l

log N

.

In particular, the event immediately preceding any lookup is
a departure with this probability. This is the probability that
the lookup encounters the timeout. Finally, the expected num-
ber of timeouts experienced by a lookup operation is l ∗ pt =
R/(R/l + N/(90 logN) + 1/ log(N)). As examples, the ex-
pected number of timeouts is 0.041 for R = 0.05, and 0.31 for
R = 0.4. These values are reasonable close to the measured
values shown in Table III.
The last column in Table III shows the number of lookup fail-

ures per 10,000 lookups. The reason for these lookup failures
is state inconsistency. In particular, despite the fact that each
node maintains a successor list of 2 log2 N nodes, it is possible
that for short periods of time a node may point to an incorrect
successor. Suppose at time t, node n knows both its first and its
second successor, s1 and s2. Assume that just after time t, a new
node s joins the network between s1 and s2, and that s1 leaves
before n had the chance to discover s. Once n learns that s1

has left, n will replace it with s2, the closest successor n knows
about. As a result, for any key id ∈ (n, s), n will return node
s2 instead of s. However, the next time n invokes stabilization
for s2, n will learn its correct successor s.

F. Improving Routing Latency
While Chord ensures that the average path length is only

1
2

log2 N , the lookup latency can be quite large. This is be-
cause the node identifiers are randomly distributed, and there-
fore nodes close in the identifier space can be far away in the
underlying network. In previous work [8] we attempted to re-
duce lookup latency with a simple extension of the Chord pro-
tocol that exploits only the information already in a node’s fin-
ger table. The idea was to choose the next-hop finger based on
both progress in identifier space and latency in the underlying
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Number of Stretch (10th, 90th percentiles)
fingers’ successors Iterative Recursive

(s) 3-d space Transit stub 3-d space Transit stub
1 7.8 (4.4, 19.8) 7.2 (4.4, 36.0) 4.5 (2.5, 11.5) 4.1 (2.7, 24.0)
2 7.2 (3.8, 18.0) 7.1 (4.2, 33.6) 3.5 (2.0, 8.7) 3.6 (2.3, 17.0)
4 6.1 (3.1, 15.3) 6.4 (3.2, 30.6) 2.7 (1.6, 6.4) 2.8 (1.8, 12.7)
8 4.7 (2.4, 11.8) 4.9 (1.9, 19.0) 2.1 (1.4, 4.7) 2.0 (1.4, 8.9)
16 3.4 (1.9, 8.4) 2.2 (1.7, 7.4) 1.7 (1.2, 3.5) 1.5 (1.3, 4.0)

TABLE IV
The stretch of the lookup latency for a Chord system with 216 nodes when the lookup is performed both in the iterative and recursive style. Two network models

are considered: a 3-d Euclidean space, and a transit stub network.

network, trying to maximize the former while minimizing the
latter. While this protocol extension is simple to implement and
does not require any additional state, its performance is difficult
to analyze [8]. In this section, we present an alternate proto-
col extension, which provides better performance at the cost of
slightly increasing the Chord state and message complexity. We
emphasize that we are actively exploring techniques to mini-
mize lookup latency, and we expect further improvements in the
future.
The main idea of our scheme is to maintain a set of alternate

nodes for each finger (that is, nodes with similar identifiers that
are roughly equivalent for routing purposes), and then route the
queries by selecting the closest node among the alternate nodes
according to some network proximity metric. In particular, ev-
ery node associates with each of its fingers, f , a list of s imme-
diate successors of f . In addition, we modify the find successor
function in Figure 5 accordingly: instead of simply returning the
largest finger, f , that precedes the queried ID, the function re-
turns the closest node (in terms of networking distance) among
f and its s successors. For simplicity, we choose s = r, where
r is the length of the successor list; one could reduce the stor-
age requirements for the routing table by maintaining, for each
finger f , only the closest node n among f ’s s successors. To
update n, a node can simply ask f for its successor list, and
then ping each node in the list. The node can update n either
periodically, or when it detects that n has failed. Observe that
this heuristic can be applied only in the recursive (not the iter-
ative) implementation of lookup, as the original querying node
will have no distance measurements to the fingers of each node
on the path.
To illustrate the efficacy of this heuristic, we consider a Chord

system with 216 nodes and two network topologies:
• 3-d space: The network distance is modeled as the geo-
metric distance in a 3-dimensional space. This model is
motivated by recent research [19] showing that the network
latency between two nodes in the Internet can be mod-
eled (with good accuracy) as the geometric distance in a
d-dimensional Euclidean space, where d ≥ 3.

• Transit stub: A transit-stub topology with 5,000 nodes,
where link latencies are 50 milliseconds for intra-transit
domain links, 20 milliseconds for transit-stub links and 1
milliseconds for intra-stub domain links. Chord nodes are
randomly assigned to stub nodes. This network topology
aims to reflect the hierarchical organization of today’s In-
ternet.

We use the lookup stretch as the main metric to evaluate our
heuristic. The lookup stretch is defined as the ratio between the
(1) latency of a Chord lookup from the time the lookup is initi-
ated to the time the result is returned to the initiator, and the (2)
latency of an optimal lookup using the underlying network. The
latter is computed as the round-trip time between the initiator
and the server responsible for the queried ID.
Table IV shows the median, the 10th and the 99th percentiles

of the lookup stretch over 10,000 lookups for both the iterative
and the recursive styles. The results suggest that our heuristic is
quite effective. The stretch decreases significantly as s increases
from one to 16.
As expected, these results also demonstrate that recursive

lookups execute faster than iterative lookups. Without any la-
tency optimization, the recursive lookup style is expected to be
approximately twice as fast as the iterative style: an iterative
lookup incurs a round-trip latency per hop, while a recursive
lookup incurs a one-way latency.
Note that in a 3-d Euclidean space the expected distance from

a node to the closest node from a set of s + 1 random nodes
is proportional to (s + 1)1/3. Since the number of Chord hops
does not change as s increases, we expect the lookup latency to
be also proportional to (s+1)1/3. This observation is consistent
with the results presented in Table IV. For instance, for s = 16,
we have 171/3 = 2.57, which is close to the observed reduction
of the median value of the lookup stretch from s = 1 to s = 16.

VI. FUTURE WORK

Work remains to be done in improving Chord’s resilience
against network partitions and adversarial nodes as well as its
efficiency.
Chord can detect and heal partitions whose nodes know of

each other. One way to obtain this knowledge is for every node
to know of the same small set of initial nodes. Another ap-
proach might be for nodes to maintain long-term memory of a
random set of nodes they have encountered in the past; if a parti-
tion forms, the random sets in one partition are likely to include
nodes from the other partition.
A malicious or buggy set of Chord participants could present

an incorrect view of the Chord ring. Assuming that the data
Chord is being used to locate is cryptographically authenticated,
this is a threat to availability of data rather than to authentic-
ity. One way to check global consistency is for each node n to
periodically ask other nodes to do a Chord lookup for n; if the
lookup does not yield node n, this could be an indication for
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victims that they are not seeing a globally consistent view of the
Chord ring.
Even 1

2
log2 N messages per lookup may be too many for

some applications of Chord, especially if each message must
be sent to a random Internet host. Instead of placing its fin-
gers at distances that are all powers of 2, Chord could easily
be changed to place its fingers at distances that are all inte-
ger powers of 1 + 1/d. Under such a scheme, a single rout-
ing hop could decrease the distance to a query to 1/(1 + d) of
the original distance, meaning that log1+d N hops would suf-
fice. However, the number of fingers needed would increase to
log N/(log(1 + 1/d) ≈ O(d log N).

VII. CONCLUSION

Many distributed peer-to-peer applications need to determine
the node that stores a data item. The Chord protocol solves this
challenging problem in decentralized manner. It offers a pow-
erful primitive: given a key, it determines the node responsible
for storing the key’s value, and does so efficiently. In the steady
state, in anN -node network, each node maintains routing infor-
mation for only O(log N) other nodes, and resolves all lookups
via O(log N) messages to other nodes.
Attractive features of Chord include its simplicity, provable

correctness, and provable performance even in the face of con-
current node arrivals and departures. It continues to function
correctly, albeit at degraded performance, when a node’s infor-
mation is only partially correct. Our theoretical analysis and
simulation results confirm that Chord scales well with the num-
ber of nodes, recovers from large numbers of simultaneous node
failures and joins, and answers most lookups correctly even dur-
ing recovery.
We believe that Chord will be a valuable component for peer-

to-peer, large-scale distributed applications such as cooperative
file sharing, time-shared available storage systems, distributed
indices for document and service discovery, and large-scale
distributed computing platforms. Our initial experience with
Chord has been very promising. We have already built sev-
eral peer-to-peer applications using Chord, including a coop-
erative file sharing application [9]. The software is available
at http://pdos.lcs.mit.edu/chord/.
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