Networking Case Studies

Enterprise → Backbone → Datacenter

Wireless
Cloud Computing
Cloud Computing

• **Demand-elastic resources**
 - Expand & contract resources as demand dictates
 • Pay-per-use; Infrastructure on demand

• **Multi-tenancy**
 - Multiple independent users
 - Security and resource isolation
 - Amortize the (shared) infrastructure cost
 - Flexible service management
Cloud Service Models

• **Software as a Service**
 – Provider licenses applications to users as a service
 – e.g., customer relationship management, e-mail, ..
 – Avoid costs of installation, maintenance, patches

• **Platform as a Service**
 – Provider offers platform for building applications
 – E.g., Google’s App-Engine, Amazon S3 storage
 – Avoid worrying about scalability of platform
Cloud Service Models

• Infrastructure as a Service
 – Provider offers raw computing, storage, and network
 – E.g., Amazon’s Elastic Computing Cloud (EC2)
 – Avoid buying servers & estimating resource needs
Enabling Technology: Virtualization

- Multiple virtual machines on one physical machine
- Applications run unmodified as on real machine
- Recently: Lighter-weight virtualization through “containers”
- Can migrate from one machine to another
- Autoscale by spinning up/down VMs & containers
Multi-Tier Applications

• Applications consist of tasks
 – Many separate components
 – Running on different machines

• Commodity computers
 – Many general-purpose computers
 – Not one big mainframe
 – Easier scaling
Componentization leads to different types of network traffic

• “North-South traffic”
 – Traffic to/from external clients (outside of datacenter)
 – Handled by front-end (web) servers, mid-tier application servers, and back-end databases
 – Traffic patterns fairly stable, though diurnal variations

• “East-West traffic”
 – Traffic within data-parallel computations within datacenter (e.g. “Partition/Aggregate” programs like Map Reduce)
 – Data in distributed storage, partitions transferred to compute nodes, results joined at aggregation points, written back to storage
 – Traffic may shift on small timescales (e.g., minutes)
North-South Traffic

Router

Front-End Proxy
- Web Server
 - Data Cache
- Web Server
 - Data Cache
- Web Server
 - Database

Front-End Proxy
- Web Server
 - Database
East-West Traffic

Distributed Storage

Map Tasks

Reduce Tasks

Distributed Storage
Datacenter Network
Virtual Switch in Server
Top-of-Rack Architecture

• Rack of servers
 – Commodity servers
 – And top-of-rack switch

• Modular design
 – Preconfigured racks
 – Power, network, and storage cabling
Aggregate to the Next Level
Datacenter Network Topology

Internet

- CR = Core Router
- AR = Access Router
- S = Ethernet Switch
- A = Rack of app. servers

~ 1,000 servers/pod

Key

- CR = Core Router
- AR = Access Router
- S = Ethernet Switch
- A = Rack of app. servers
Capacity Mismatch?

“Oversubscription”: Much more demand vs. supply for higher links
Capacity Mismatch!

Particularly bad for east-west traffic
Layer 2 vs. Layer 3?

- **Ethernet switching (layer 2)**
 - Cheaper switch equipment
 - Fixed addresses and auto-configuration
 - Seamless mobility, migration, and failover

- **IP routing (layer 3)**
 - Scalability through hierarchical addressing
 - Efficiency through shortest-path routing
 - Multipath routing through equal-cost multipath
Datacenter Routing

Key
• CR = Core Router (L3)
• AR = Access Router (L3)
• S = Ethernet Switch (L2)
• A = Rack of app. servers

-~ 1,000 servers/pod == IP subnet
New datacenter networking problems have emerged...
Incast arises from synchronized parallel requests
- Web server sends out parallel request ("which friends of Johnny are online?")
- Nodes reply at same time, cause traffic burst
- Replies potentially exceed switch's buffer, causing drops
Network Incast

Solutions mitigating network incast...

A. Reduce TCP’s min RTO (often use 200ms >> DC RTT)
B. Increase buffer size
C. Add small randomized delay at node before reply
D. Use ECN with instantaneous queue size
E. All of above
Network Bandwidth Measurements

- Bisection bandwidth: Split nodes into two halves such that bandwidth between the halves is minimal, that is the bisection b/w

- Full bisection bandwidth: $\frac{1}{2}$ of the nodes can communicate simultaneously with the other $\frac{1}{2}$
Full Bisection Bandwidth

• Eliminate oversubscription?
 – Enter FatTrees
 – Provide static capacity
 – Heterogeneous Links
 • 1-10 GB in racks
 • 40-100GB to core
Full Bisection Bandwidth

- But “scale up” link capacity has limits
- New scale out architectures
 - Build multi-stage FatTree out of k-port switches
 - k/2 ports up, k/2 down
 - Supports \(k^3/4 \) hosts: 48 ports, 27,648 hosts
Full Bisection Bandwidth Not Sufficient

- Must choose good paths for full bisectional throughput
- Load-agnostic routing
 - Use ECMP across multiple potential paths
 - Can collide, but ephemeral? Not if long-lived, large elephants
- Load-aware routing
 - Centralized flow scheduling, end-host congestion feedback, switch local algorithms
Conclusion

• **Cloud computing**
 – Major trend in IT industry
 – Today’s equivalent of factories

• **Datacenter networking**
 – Regular topologies interconnecting VMs
 – Mix of Ethernet and IP networking

• **Modular, multi-tier applications**
 – New ways of building applications
 – New performance challenges