## Security I: Concepts and Applications Lecture 20 COS 461: Computer Networks Kyle Jamieson ### Internet's Design: Insecure - Designed for simplicity - "On by default" design - Readily available zombie machines - Attacks look like normal traffic - Internet's federated operation obstructs cooperation for diagnosis/mitigation # Eavesdropping - Message Interception (Attack on Confidentiality) - Unauthorized access to information - Packet sniffers and wiretappers (e.g. tcpdump) - Illicit copying of files and programs ### Integrity Attack - Tampering - Stop the flow of the message - Delay and optionally modify the message - Release the message again ### Authenticity Attack - Fabrication - Unauthorized assumption of other's identity - Generate and distribute objects under identity ### Attack on Availability - Destroy hardware (cutting fiber) or software - Modify software in a subtle way - Corrupt packets in transit - Blatant denial of service (DoS): - Crashing the server - Overwhelm the server (use up its resource) # Basic Security Properties • Confidentiality: Concealment of information or resources Authenticity: Identification & assurance of origin of info Integrity: Trustworthiness of data/resources; preventing improper/unauthorized changes Availability: Ability to use desired information/resource Non-repudiation: Offer of evidence that a party indeed is sender or a receiver of certain information Access control: Facilities to determine and enforce who is allowed access to what resources (host, software, network, ...) ### Security protocols at many layers - Application layer - E-mail: PGP, using a web-of-trust - Web: HTTP-S, using a certificate hierarchy - Transport layer - Transport Layer Security/ Secure Socket Layer - Network layer - IP Sec - Network infrastructure - DNS-Sec and BGP-Sec # Introduction to Cryptography # Cryptographic Algorithms: Goal - One-way functions: cryptographic hash - Easy to compute hash - Hard to invert - "Trapdoor" functions: encryption/signatures - Given ciphertext alone, hard to compute plaintext (invert) - Given ciphertext and key (the "trapdoor"), relatively easy to compute plaintext - "Level" of security often based on "length" of key ### Encryption and MAC/Signatures #### <u>Confidentiality</u> (Encryption) #### Sender: - Compute C = Enc<sub>K</sub>(M) - Send C #### Receiver: Recover M = Dec<sub>K</sub>(C) #### <u>Auth/Integrity (MAC / Signature)</u> #### Sender: - Compute s = Sig<sub>K</sub>(Hash (M)) - Send <M, s> #### Receiver: - Compute s' = Ver<sub>K</sub>(Hash (M)) - Check s' == s These are simplified forms of the actual algorithms # Symmetric vs. Asymmetric Crypto a.k.a. Secret vs. Public Key Crypto ### Symmetric crypto (all crypto pre 1970s) - Sender and recipient share a common key - All classical encryption algorithms are private-key - Dual use: confidentiality or authentication/integrity - Encryption vs. msg authentication code (MAC) #### Public-key crypto - (Public, private) key associated w/ea. entity ("Alice") - Anybody can encrypt to Alice, anybody can verify Alice's message - Only Alice can decrypt, only Alice can "sign" - Developed to address "key distribution" problem and "digital signatures" (w/o prior establishment) ### Why still both? #### Symmetric Pros and Cons - Simple and very fast (1000-10000x faster than asymmetric) - Must agree/distribute the key beforehand - AES/CBC (256-bit) → 80 MB/s (for 2048 bits, .003 ms) #### Public Key Pros and Cons - Easier key pre-distro.: "Public Key Infrastructure" (PKI) - Much slower - -2048-RSA → 6.1ms Decrypt, 0.16ms Encrypt #### Common "engineering" approach: Best of both worlds via "hybrid" scheme: Use public key to distribute a new random "session" key b/w sender and recipient, then symmetric crypto for remainder of session # Email Security: Pretty Good Privacy (PGP) # Sender and Receiver Keys - If the receiver knows the sender's public key - Sender authentication - Sender non-repudiation - If the sender knows the receiver's public key - Confidentiality - Receiver authentication ### Sending an E-Mail Securely - Sender digitally signs the message - Using the sender's private key - Sender encrypts the data - Using a one-time session key - Sending the session key, encrypted with the receiver's public key - Sender converts to an ASCII format - Converting the message to base 64 encoding - (Email messages must be sent in ASCII) ### Public Key Certificate - Binding between identity and a public key - "Identity" is, for example, an e-mail address - "Binding" ensured using a digital signature - Contents of a certificate - Identity of the entity being certified - Public key of the entity being certified - Identity of the signer - Digital signature - Digital signature algorithm id #### Web of Trust for PGP #### Decentralized solution - Protection against state actor intrusion - No central certificate authorities #### Customized solution - Individual decides whom to trust, and how much - Multiple certificates with different confidence levels ### Key-signing parties! - Collect and provide public keys in person - Sign other's keys, and get your key signed by others # HTTP Security #### HTTP Threat Model - Eavesdropper - Listening on conversation (confidentiality) - · Man-in-the-middle - Modifying content (integrity) - Impersonation - Bogus website (authentication, confidentiality) ### HTTP-S: Securing HTTP - HTTP sits on top of secure channel (SSL/TLS) - https:// vs. http:// - TCP port 443 vs. 80 - All (HTTP) bytes encrypted and authenticated - No change to HTTP itself! - Where to get the key??? ### Learning a Valid Public Key - What is that lock? - Securely binds domain name to public key (PK) - If PK is authenticated, then any message signed by that PK cannot be forged by non-authorized party - Believable only if you trust the attesting body - Bootstrapping problem: Who to trust, and how to tell if this message is actually from them? ### Hierarchical Public Key Infrastructure #### Public key certificate - Binding between identity and a public key - "Identity" is, for example, a domain name - Digital signature to ensure integrity #### Certificate authority - Issues public key certificates and verifies identities - Trusted parties (e.g., VeriSign, GoDaddy, Comodo) - Preconfigured certificates in Web browsers ### Public Key Certificate #### Certificate www.wellsfargo.com DigiCert Global CA G2 DigiCert Global Root G2 **Subject Name** **Business Category** Private Organization Inc. Country US **Inc. State/Province** Delaware Serial Number 251212 **Country** US State/Province California Locality San Francisco **Organization** Wells Fargo & Company Organizational Unit DCG-PSG Common Name www.wellsfargo.com Issuer Name **Country** US **Organization** DigiCert Inc Common Name DigiCert Global CA G2 Validity - Not Before 2/7/2019, 7:00:00 PM (Eastern Daylight Time) Not After 2/8/2021, 7:00:00 AM (Eastern Daylight Time) Subject Alt Names - **DNS Name** www.wellsfargo.com #### Certificate Subject Name Country US Organization DigiCert Global CA G2 Issuer Name Country US Organization DigiCert Inc Organizational Unit www.digicert.com Common Name DigiCert Global Root G2 Validity Not Before 8/1/2013, 8:00:00 AM (Eastern Daylight Time) Not After 8/1/2028, 8:00:00 AM (Eastern Daylight Time) **Public Key Info** Algorithm RSA Key Size 2048 Exponent 65537 **Modulus** D3:48:7C:BE:F3:05:86:5D:5B:D5:2F:85:4E:4B:E0:86:AD:15:AC:61:CF:5B:AF:3E:6A:0A:47:FB:9A:76:91:60:0... Miscellaneous **Serial Number** 0C:8E:E0:C9:0D:6A:89:15:88:04:06:1E:E2:41:F9:AF Signature Algorithm SHA-256 with RSA Encryption **Version** 3 Download PEM (cert) PEM (chain) # Transport Layer Security (TLS) Based on the earlier Secure Socket Layer (SSL) originally developed by Netscape ### TLS Handshake Protocol - Send new random value, list of supported ciphers - Send pre-secret, encrypted under PK - Create shared secret key from pre-secret and random - Switch to new symmetrickey cipher using shared key Send new random value, digital certificate with PK - Create shared secret key from pre-secret and random - Switch to new symmetrickey cipher using shared key #### TLS Record Protocol - Messages from application layer are: - Fragmented or coalesced into blocks - Optionally compressed - Integrity-protected using an HMAC - Encrypted using symmetric-key cipher - Passed to the transport layer (usually TCP) - Sequence #s on record-protocol messages - Prevents replays and reorderings of messages #### Comments on HTTPS - HTTPS authenticates server, not content - If CDN (Akamai) serves content over HTTPS, customer must trust Akamai not to change content - Symmetric-key crypto after public-key ops - Handshake protocol using public key crypto - Symmetric-key crypto much faster (100-1000x) - HTTPS on top of TCP, so reliable byte stream - Can leverage fact that transmission is reliable to ensure: each data segment received exactly once - Adversary can't successfully drop or replay packets # IP Security ### IP Security - There are range of app-specific security mechanisms - eg. TLS/HTTPS, S/MIME, PGP, Kerberos, ... - But security concerns that cut across protocol layers - Implement by the network for all applications? ### Enter IPSec! #### **IPSec** General IP Security framework - Allows one to provide - Access control, integrity, authentication, originality, and confidentiality - Applicable to different settings - Narrow streams: Specific TCP connections - Wide streams: All packets between two gateways ### IPSec Uses ### Benefits of IPSec - If in a firewall/router: - Strong security to all traffic crossing perimeter - Resistant to bypass - Below transport layer - Transparent to applications - Can be transparent to end users Can provide security for individual users ### IP Security Architecture - Specification quite complex - Mandatory in IPv6, optional in IPv4 - Two security header extensions: - Authentication Header (AH) - Connectionless integrity, origin authentication - MAC over most header fields and packet body - Anti-replay protection - Encapsulating Security Payload (ESP) - · These properties, plus confidentiality ### Encapsulating Security Payload (ESP) - Transport mode: Data encrypted, but not header - After all, network headers needed for routing! - Can still do traffic analysis, but is efficient - Good for host-to-host traffic - Tunnel mode ("IP-in-IP") - Encrypts entire IP packet - Add new header for next hop - Good for VPNs, gateway-to-gateway security ### Replay Protection is Hard - Goal: Eavesdropper can't capture encrypted packet and duplicate later - Easy with TLS/HTTP on TCP: Reliable byte stream - But IP Sec at packet layer; transport may not be reliable - IPSec solution: Sliding window on sequence #'s - All IPSec packets have a 64-bit sequence number - Receiver keeps track of which seqno's seen before - [latest window + 1 , latest]; window ~64 packets - Accept packet if - seqno > latest (and update latest) - · Within window but has not been seen before - If reliable, could remember last, and accept iff last + 1 #### Conclusions - Security at many layers - Application, transport, and network layers - Customized to the properties and requirements - Exchanging keys - Public key certificates - Certificate authorities vs. Web of trust - Next time - Network security: DNS, BGP