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• Health and Fitness
• Virtual Reality
• UAVs
• Internet of Things 

Sensors
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Wireless is increasingly 
prevalent

Smart Home
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3Next demand driver:
Billions of Wireless devices

Increasing	Demand	for	Wireless	Connectivity



Wireless Links
• Interference / bit errors
–More sources of corruption vs wired

• Multipath propagation
– Signal does not travel in a straight line

• (Often) a broadcast medium
– All traffic to everyone nearby

• Power trade-offs
– Important for mobile, battery-powered 

devices
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Wireless Links: High Bit Error Rate

• Decreasing signal strength
–Disperses as it travels greater distance
–Attenuates as it passes through matter
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Wireless Links: High Bit Error Rate

• Interference from other sources
– Radio sources in same frequency band
– E.g., 2.4 GHz wireless phone interferes with 

802.11b wireless LAN
– Electromagnetic noise (e.g., microwave oven)
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Wireless Links: High Bit Error 
Rate

• Multi-path propagation
– Electromagnetic waves reflect off objects
– Taking many paths of different lengths
– Causing blurring of signal at the receiver
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transmitter



Dealing With Bit Errors
• Wireless vs. wired links
– Wired: most loss is due to queuing congestion
– Wireless: higher, time-varying bit-error rate

• Dealing with high bit-error rates
– Sender could increase transmission power
• More interference with other senders

– Stronger error detection and recovery
• More powerful error detection/correction codes
• Link-layer retransmission of corrupted frames
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Wireless Broadcast: Hidden 
Terminals

• Wired broadcast links
– E.g., Ethernet bridging, in wired LANs
– All nodes receive transmissions from all other nodes

• Wireless broadcast: hidden terminal problem
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A
B

C • A and B hear each other
• B and C hear each other
• But, A and C do not

So, A and C are unaware of 
their interference at B



Wireless Broadcast and Interference

• Interference matters at the receiver
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A B C

A’s signal
strength

space

C’s signal
strength

• A and B hear each other
• B and C hear each other
• But, A and C do not

So, A and C are unaware of 
their interference at B



Wi-Fi: 802.11 Wireless LANs
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Channels and Association
• Multiple channels at different frequencies
– Network administrator chooses frequency for AP
– Interference if channel is same as neighboring AP
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Channels and Association
• Multiple channels at different frequencies
– Network administrator chooses frequency for AP
– Interference if channel is same as neighboring AP

• Access points send periodic beacon frames
– Containing AP’s name (SSID) and MAC address
– Host scans channels, listening for beacon frames
– Host selects an access point:  association 

request/response protocol between host and AP
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Mobility Within the Same Subnet
• H1 remains in same IP subnet

– IP address of the host can remain same
– Ongoing data transfers can continue uninterrupted

• H1 recognizes the need to change
– H1 detects a weakening signal
– Starts scanning for stronger one

• Changes APs with same SSID
– H1 disassociates from one
– And associates with other 

• Switch learns new location
– Self-learning mechanism
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Packet radio Wireless LAN Wired LAN

ALOHAnet 1960s

Amateur packet radio Ethernet 1970s
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Medium access: a Timeline



ALOHAnet: Context
• Norm Abramson, 1970 at the University of Hawaii

– Seven campuses, on four islands

–Wanted to connect campus terminals and 
mainframe

– Telephone costs high, so built a packet radio 
network
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Medium Access Control: 
“Unslotted ALOHA”

• Suppose: Chance packet begins in time 
interval Δt is λ× Δt
– N senders in total, send frames of time 

duration 1

• Then: λ frames/sec aggregate rate from all 
N senders
– Individual rate λ/N for each sender

Time

Node 3

Node 2

Node 1
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Unslotted ALOHA: Performance
• Suppose some node i is transmitting; let’s focus on i ’s frame
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I. Others send in [t0−1, t0]: overlap i ’s frame start à collision
II. Others send in [t0, t0+1]: overlap i ’s frame end à collision
III.Otherwise, no collision, node i ’s frame is delivered

• Therefore, vulnerable period of length 2 around i ’s frame

Vulnerable period



Unslotted ALOHA: Performance
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• What’s the chance no one else sends in the vulnerable period (length 
2)?

Vulnerable period



Unslotted ALOHA: Utilization
• Utilization: For what fraction of the time is there a non-

colliding transmission present on the medium?
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• Recall, λ is the total rate from all senders
• So, utilization = λ × Pr(no other transmission in 2)

= λe−2λ

λ

Utilization 1/2e ≈ 18%

Too many collisions!

Not sending 
fast enough



Medium Access Control Refinement: 
“Slotted ALOHA”

• Divide time into slots of duration 1, synchronize so that nodes 
transmit only in a slot
– Each of N nodes transmits w/prob. p in each slot
– So total transmission rate λ = N× p

• As before, if exactly one transmission in slot, can receive; if two or 
more in slot, no one can receive (collision)
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Time
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Slotted ALOHA: Utilization
(N nodes, each transmits with probability p in each slot)

What is the utilization as a function of aggregate 
rate λ = N × p?

• Pr[A node is successful in a slot] = p(1−p)N−1

• Pr[Success in a slot] = Np(1−p)N−1

Pr success( ) = λ 1− λ
N
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λ

1/e ≈ 37%Utilization:
λe-λ



ALOHA Medium Access Control:
Timeslots Double Throughput!

Unslotted ALOHA: 
λe−2λ

Slotted ALOHA: 
λe−λ

1/2e ≈ 18%

1/e ≈ 36%

Just by forcing nodes to transmit on slot 
boundaries, we double peak medium utilization!
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Packet radio Wireless LAN Wired LAN

ALOHAnet 1960s

Amateur packet radio Ethernet 1970s
1980s

MACA 1990s

MACAW

IEEE 802.11 2000s
2010s
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Medium access: Timeline



• Assumptions
– Uniform, circular radio propagation
• Fixed transmit power, all same ranges

– Equal interference and transmit ranges

• Goals
– Fairness in sharing of medium
– Efficiency (total bandwidth achieved)
– Reliability of data transfer at MAC layer 25

MACA: Assumptions and goals

Radios modeled as “conditionally connected” 
wires based on circular radio ranges



When Does Listen-Before-Talk Carrier 
Sense (CS) Work Well?

• Two pairs far away from each other
– Neither sender carrier-senses the other 
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A
B

C
D

B transmits to A, while D transmits to C.



When Does CS Work Well?
• Both transmitters can carrier sense each other
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A
B
C

D

B transmits to A, D transmits to C, taking turns.

But what about cases in 
between these extremes?
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Hidden Terminal Problem

• C can’t hear A, so C will transmit while A transmits
– Result: Collision at B

• Carrier Sense insufficient to detect all transmissions 
on wireless networks!

• Key insight: Collisions are spatially located at 
receiver

A B C
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Exposed Terminal Problem

• If C transmits, does it cause a collision at A?
– Yet C cannot transmit while B transmits to A!

• Same insight: Collisions spatially located at receiver

• One possibility: directional antennas rather than 
omnidirectional. Why does this help? Why is it hard?

A B C



MACA: Multiple Access
with Collision Avoidance
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• Carrier sense became adopted in packet radio

• But distances (cell size) remained large

• Hidden and Exposed terminals abounded

• Simple solution: use receiver’s medium state to 
determine transmitter behavior



RTS/CTS
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• Exchange of two short messages: Request to 
Send (RTS) and Clear to Send (CTS)

• Algorithm
1. A sends an RTS (tells B to prepare)
2. B replies an CTS (echoes message length)
3. A sends its Data

A B C
1. “RTS, k bits”

2. “CTS, k bits”

3. “Data”



Deference to CTS
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• Hear CTS à Defer for length of expected data 
transmission time

– Solves hidden terminal problem

A B C
1. “RTS, k bits”

2. “CTS, k bits”

defers
3. “Data”



Deference to RTS, but not CS
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• Hear RTS à Defer one CTS-time (why?)

• MACA: No carrier sense before sending!
– Karn concluded useless because of hidden terminals

• So exposed terminals B, C can transmit concurrently:

A B C
1. “RTS, k bits”

2. “CTS, 
k bits”

3. “Data” D
(No deference 
after Step 2)



Collision!
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• A’s RTS collides with C’s RTS, both are lost at B

• B will not reply with a CTS

• Might collisions involving data packets occur?

– Not according to our (unrealistic) assumptions

– But Karn acknowledges interference range > 
communication range

A B C
RTS RTSCollision
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Bounded Exponential Backoff
(BEB) in MACA

• When collisions arise, MACA senders randomly 
backoff like Ethernet senders then retry the 
RTS

• How long do collisions take to detect in the 
Experimental Ethernet?

• What size should we make MACA backoff slots?
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BEB in MACA
• Current backoff constant: CW

• MACA sender:
– CW0 = 2 and CWM = 64
– Upon successful RTS/CTS, CW ß CW0
– Upon failed RTS/CTS, CW ß min[2CW, CWM]

• Before retransmission, wait a uniform 
random number of RTS lengths (30 bytes) 
in [0, CW]
– 30 bytes = 240 µs



Summary
• Wireless networks: de facto means of 

accessing the Internet

• Alohanet, MACA packet radio network 
design insights

• Evolution from ALOHAnet, Ethernet, 
MACA, toward IEEE 802.11 Wi-Fi

37


