

Content Distribution Networks

Lecture 16 COS 461: Computer Networks Kyle Jamieson

Content Distribution Network (CDN)

- Proactive content replication
 - Content provider (e.g., CNN) contracts with a CDN
- CDN replicates the content
 - On many servers spread throughout the Internet
- Updating the replicas
 - Reactive by TTL or updates CDN server pushed to replicas when the in S. America in Europe content changes

Server Selection Policy

- Live server
 - For availability
- Requires continuous monitoring of liveness, load, and performance

Lowest load

– To balance load across the servers

- Closest
 - Nearest geographically, or in round-trip time
- Best performance

– Throughput, latency, ...

• Cheapest bandwidth, electricity, ...

Server Selection Mechanism

Application

 HTTP redirection

Advantages

- Fine-grain control
- Selection based on client IP address
- Disadvantages
 - Extra round-trips for TCP connection to server
 - Overhead on the server

Server Selection Mechanism

- Routing
 - Anycast routing

- Advantages
 - No extra round trips
 - Route to nearby server
- Disadvantages
 - Does not consider
 network or server load
 - Different packets may go to different servers
 - Used only for simple request-response apps

Server Selection Mechanism

- Naming
 - DNS-based server selection

- Advantages
 - Avoid TCP set-up delay
 - DNS caching reduces overhead
 - Relatively fine control

Disadvantage

- Based on IP address of local DNS server
- "Hidden load" effect
- DNS TTL limits adaptation

How Akamai Works

Akamai Statistics

- Distributed servers
 - Servers: ~275,000
 - Networks: 1,500
 - Countries: 136

- Many customers
 - 50% of Fortune Global 500

Network

- Up to 50 Tbps daily
- 2019 Cricket World
 Cup: 25.3M
 concurrent viewers
- 85% of Internet is
 one network hop
 from Akamai
 servers

How Akamai Works: Cache Hit

Mapping System

- Equivalence classes of IP addresses
 - IP addresses experiencing similar performance
 - -Quantify how well they connect to each other

- Collect and combine measurements
 - Ping, traceroute, BGP routes, server logs
 - E.g., over 100 TB of logs per days
 - Network latency, loss, and connectivity

Routing Client Requests within Map

- Map each IP class to a preferred server cluster
 - Based on performance, cluster health, etc.
 - Updated roughly every minute
 - Short, 60-sec DNS TTLs in Akamai regional DNS accomplish this
- Map client request to a server in the cluster
 - -Load balancer selects a specific server
 - -E.g., to maximize the cache hit rate

Selecting server inside cluster

- "Consistent hashing"
 - content_key = hash(URL) mod N
 - node_key = hash(server ID) mod N
 - Content belongs to server's node_key is "closest" to URL's content_key

Adapting to Failures

- Failing hard drive on a server
 - Suspends after finishing "in progress" requests
- Failed server
 - Another server takes over for the IP address
 Low-level map updated quickly
- Failed cluster or network path

 High-level map updated quickly
- Failed path to customer's origin server
 Route packets through an intermediate node

Akamai Transport Optimizations

- Bad Internet routes
 - Overlay routing through an intermediate server
- Packet loss
 - Sending redundant data over multiple paths
- TCP connection set-up/teardown

 Pools of persistent connections
- TCP congestion window and round-trip time

 Estimates based on network latency
 measurements

Akamai Application Optimizations

- Slow download of embedded objects
 - Prefetch when HTML page is requested
- Large objects

 Content compression
- Slow applications
 - Moving applications to edge servers
 - E.g., content aggregation and transformation
 - E.g., static databases (e.g., product catalogs)

Conclusion

- Content distribution is hard
 - Many, diverse, changing objects
 - Clients distributed all over the world
- Moving content towards client is key

 Reduces latency, improves throughput, reliability
- Contribution distribution solutions evolved
 - Reactive caching, load balancing, to
 - Proactive content distribution networks