
HTTP and the Web
Kyle Jamieson

Lecture 15
COS 461: Computer Networks

1

Today

1. HTTP basics: headers, requests, responses

2. Web proxies; web caches

3. Web performance optimization

Two Forms of Header Formats

• Fixed: Every field (type, length) defined
– Fast parsing (good for hardware implementations)
– Not human readable
– Fairly static (IPv6 ~20 years to deploy)
– E.g., Ethernet, IP, TCP headers

• Today: Variable length headers
– Slower parsing (hard to implement in hardware)
– Human readable
– Extensible
– E.g., HTTP (Web), SMTP (Email), XML

3

HTTP Basics (Overview)
• HTTP over bidirectional byte stream (e.g. TCP)

• Interaction
– Client looks up host (DNS)
– Client sends request message to server
– Server response message contains data or error
– Requests & responses are encoded in text

• HTTP protocol itself is Stateless
– HTTP maintains no info about past client requests
– “Cookies” allow server to identify client and

associate requests into a client session
4

HTTP Request

• Request line
–Method
• GET – return URI
• HEAD – return headers only of GET response
• POST – send data to the server (forms, etc.)

– URL (relative)
• E.g., /index.html

– HTTP version

5

HTTP Request (cont.)
• Request headers
– Variable length, human-readable
– Uses:
• Authorization – authentication info
• Acceptable document types/encodings
• From – user email
• If-Modified-Since
• Referrer – what caused this page to be requested
• User-Agent – client software

• Blank-line
• Body

6

HTTP Request Example

GET /index.html HTTP/1.1
Host: www.example.com
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)
Connection: Keep-Alive

7

HTTP Response

8

“cr” is \r
“lf” is \n

HTTP Response
• Status-line
– HTTP version (now “1.1”)
– 3 digit response code
• 1XX – informational
• 2XX – success

– 200 OK
• 3XX – redirection

– 301 Moved Permanently
– 303 Moved Temporarily
– 304 Not Modified

• 4XX – client error
– 404 Not Found

• 5XX – server error
– 505 HTTP Version Not Supported

– Reason phrase 9

HTTP Response (cont.)
• Headers
– Variable length, human-readable
– Uses:

• Location – for redirection
• Server – server software
• WWW-Authenticate – request for authentication
• Allow – list of methods supported (get, head, etc)
• Content-Encoding – E.g x-gzip
• Content-Length
• Content-Type
• Expires (caching)
• Last-Modified (caching)

• Blank-line
• Body

10

HTTP Response Example
HTTP/1.1 200 OK
Date: Tue, 27 Mar 2001 03:49:38 GMT
Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_ssl/2.7.1

OpenSSL/0.9.5a DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24
Last-Modified: Mon, 29 Jan 2001 17:54:18 GMT
Accept-Ranges: bytes
Content-Length: 4333
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html
…..

11

How to Mark End of Message?
• Close connection
– Only server can do this
– One request per TCP connection. Hurts performance.

• Content-Length
– Must know size of transfer in advance

• No body content. Double CRLF marks end
– E.g., 304 never have body content

• Transfer-Encoding: chunked (HTTP/1.1)
– After headers, each chunk is content length in hex, CRLF,

then body. Final chunk is length 0.

12

Example: Chunked Encoding
HTTP/1.1 200 OK <CRLF>

Transfer-Encoding: chunked <CRLF>
<CRLF>

25 <CRLF>
This is the data in the first chunk <CRLF>
1A <CRLF>

and this is the second one <CRLF>
0 <CRLF>

• Especially useful for dynamically-generated content, as
length is not a priori known
– Server would otherwise need to cache data until done generating,

and then go back and fill-in length header before transmitting
13

Web Proxies

HTTP Caching

Proxies
• End host that acts a broker between client and server
– Speaks to server on client’s behalf

• Why?
– Privacy
– Content filtering
– Caching!!!

15

Proxies (Cont.)

• Accept requests from
multiple clients

• Takes request and
reissues it to server

• Takes response and
forwards to client

16

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin
server

origin
server

HTTP Caching

• Why cache?
– Lot of objects don’t change (images, js, css)
–Reduce # of client connections
–Reduce server load
–Reduce overall network traffic; save $$$

17

Caching is Hard
• Significant fraction (>50%?) of distinct HTTP objects may

be uncacheable
– Dynamic data: Stock prices, scores, web cams
– CGI scripts: results based on passed parameters
– Cookies: results may be based on passed data
– SSL: encrypted data is not cacheable
– Advertising / analytics: owner wants to measure # hits

• Random strings in content to ensure unique counting

• Yet significant fraction of HTTP bytes are cacheable
• Images, video, CSS pages, etc.

• Want to limit staleness of cached objects
18

How long should the client cache for?

• Clients (and proxies) cache documents
– When should origin be checked for changes?
– Every time? Every session? Date?

• HTTP includes caching information in headers
– HTTP 0.9/1.0 used: “Expires: <date>”; “Pragma: no-cache”
– HTTP/1.1 has “Cache-Control”

– “No-Cache”, “Max-age: <seconds>”
– “ETag: <opaque value>

19

Why the changes between 1.0 and 1.1?

• Timestamps
– Server hints when an object “Expires” (Expires: xxx)
– Server provides last modified date, client can check if

that’s still valid

• Problems
– Client and server might not have synchronized clocks
– Server replicas might not have synchronized clocks
–Max-age solves this: relative seconds, not abs time

20

What if cache expires?

GET / HTTP/1.1
Accept-Language: en-us
If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT
Host: www.example.com
Connection: Keep-Alive

21

• Store past expiry time (if room in cache)
• Upon client request, cache revalidates with server

HTTP/1.1 304 Not Modified
Date: Tue, 27 Mar 2001 03:50:51 GMT
Connection: Keep-Alive

HTTP xfer = single object
Web pages = many objects

nytimes.com

HTTP/1.0 fetching items:
Received sequence number plot

Fetch an 8.5 Kbyte page with 10 embedded objects, most < 10 Kbyte
All TCP connections stay in slow start, except for the large object

Bytes
received

Time (milliseconds)
Time (milliseconds)

How to handle many requests?
• Maximize goodput by reusing connections
– Avoid connection (TCP) setup
– Avoid TCP slow-start

• Client-server will maintain existing TCP connection for
up to K idle seconds

25

GET / HTTP/1.1
Host: www.example.com
Connection: Keep-Alive

HTTP/1.1 200 OK
Date: Tue, 27 Mar 2001 03:50:51 GMT
Connection: Keep-Alive

Three approaches to multiple requests

Persistent
Connections

Conn 1:
• Request 1
• Response 1
• Request 2
• Response 2
• Request 3
• Response 3

Parallel
Connections

Conn 1:
• Request 1
• Response 1

Conn 2:
• Request 2
• Response 2

Persistent connections avoid unnecessary slow starts

Fetch an 8.5 Kbyte page with 10 embedded objects, most < 10 Kbyte
Leave TCP connection open after server response, next HTTP request reuses it
Only incur one slow start, but takes an RTT to issue next request

Bytes
received

Time (milliseconds)

HTTP/1.0 with
Keep-alive

First slow start HTTP/1.0

Three approaches to multiple requests

Persistent
Connections

Conn 1:
• Request 1
• Response 1
• Request 2
• Response 2
• Request 3
• Response 3

Pipelined
Connections

Conn 1:
• Request 1
• Request 2
• Request 3
• Response 1
• Response 2
• Response 3

Parallel
Connections

Conn 1:
• Request 1
• Response 1

Conn 2:
• Request 2
• Response 2

Pipelined + Parallel Connections
overlap RTTs

Fetch an 8.5 Kbyte page with 10 embedded objects, most < 10 Kbyte
Send multiple HTTP requests simultaneously
Overlaps RTTs of all requests

Bytes
received

Time (milliseconds)

HTTP/1.1 +
pipelined requests

HTTP/1.0 with
Keep-alive

HTTP/1.0

What are challenges with pipelining?

• Head-of-line blocking
– Small xfers can “block” behind large xfer

• No reordering
– HTTP response does not “identify” which request it’s

in response to; obvious in simple request/response

• Can behave worse than parallel + persistent
— Can send expensive query 1 on conn 1, while

sending many cheap queries on conn 2

30

Google’s SPDY à HTTP/2 Standard
• Server “push” for content
• One client request, multiple responses
• After all, server knows that after parsing HTML,

client will immediately request embedded URLs

• Better pipelining and xfer
• Multiplexing multiple xfers w/o HOL blocking
• Request prioritization
• Header compression

Summary

• HTTP: dominant application layer protocol for
the web

• HTTP caching had a limited impact (CDNs next)

• Recent optimization and evolution of HTTP for
performance and efficiency

