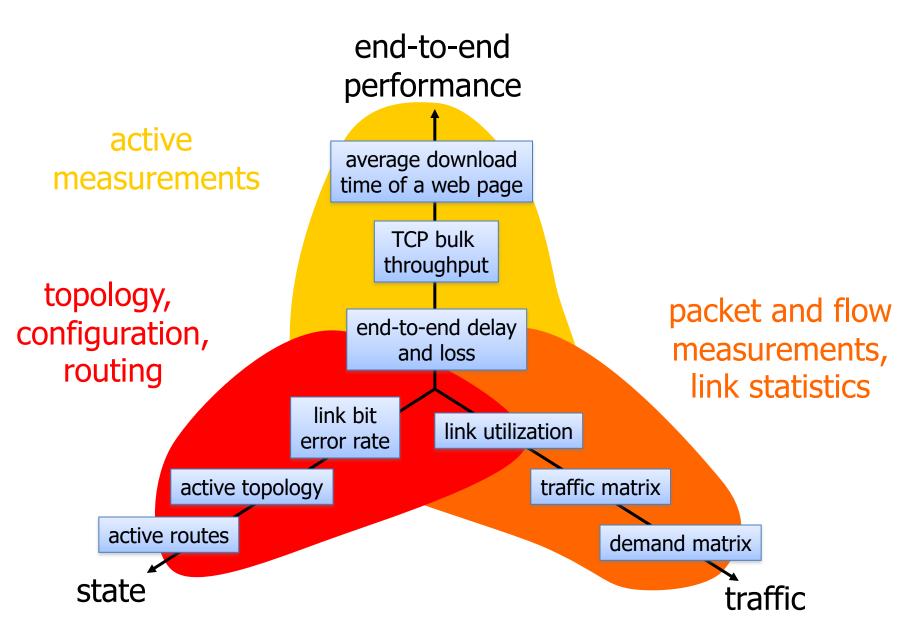


Network Measurement

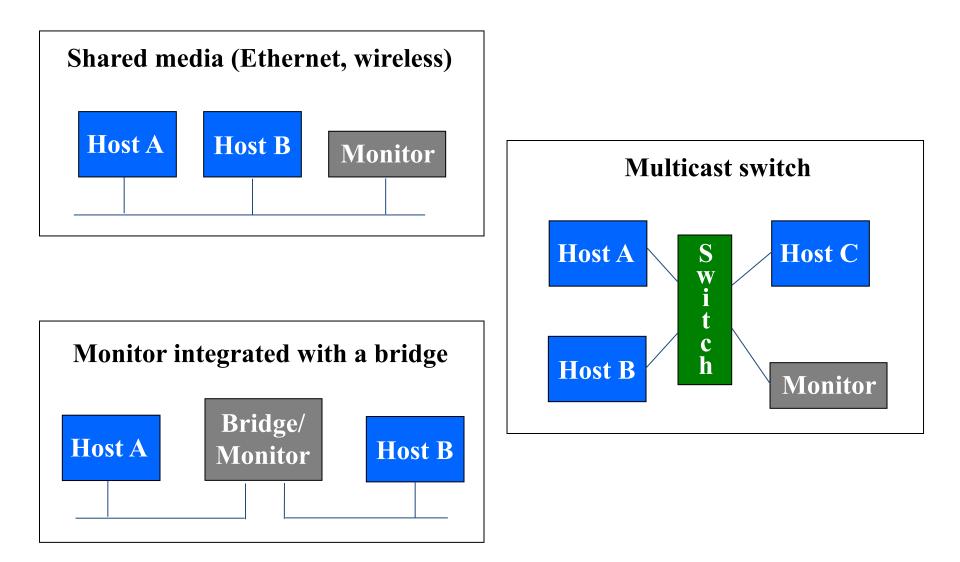

Kyle Jamieson Lecture 12 COS 461: Computer Networks

Why Measure the Network?

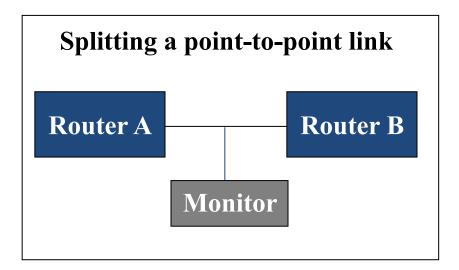
• Scientific discovery

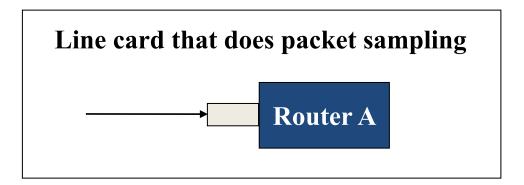
- Characterizing traffic, topology, performance
- Understanding protocol performance and dynamics
- Network operations
 - Billing customers
 - Detecting, diagnosing, and fixing problems
 - Planning outlay of new equipment

Types of Measurement



Traffic Measurement


Packet Monitoring


- Definition
 - Passively collecting IP packets on one or more links
 - Recording IP, TCP/UDP, or application-layer traces
- Scope
 - Fine-grain information about user behavior
 - Passively monitoring the network infrastructure
 - Characterizing traffic and diagnosing problems

Monitoring a LAN Link

Monitoring a WAN Link

Selecting the Traffic

- Filter to focus on a subset of the packets
 - IP addresses/prefixes (e.g., to/from specific sites)
 - Protocol (e.g., TCP, UDP, or ICMP)
 - Port numbers (e.g., HTTP, DNS, BGP, Napster)
- Collect first n bytes of packet
 - Medium access control header (if present)
 - IP header (typically 20 bytes)
 - IP+UDP header (typically 28 bytes)
 - IP+TCP header (typically 40 bytes)
 - Application-layer message (entire packet)

What to measure to..

- Understand router workload model
 - Distribution of packet sizes
- Quantify web transfer sizes

Number of packets/bytes per connection

- Which servers are popular & who heavy clients are
 - Collect source/destination IP address (on port 80)
 - Collection application URLs (harder!)
- See if a denial-of-service attack is underway
 - SYN flooding (spoofable)
 - Unusual # requests to particular (expensive) page

Analysis of IP Header Traces

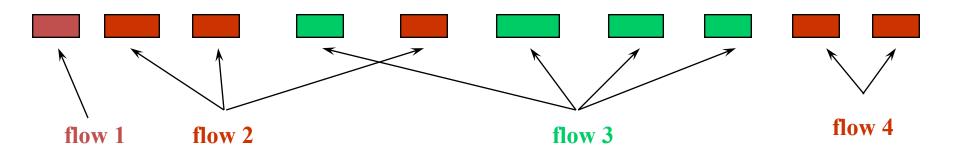
- Source/destination addresses
 - Identity of popular Web servers & heavy customers
- Distribution of packet delay through the router
 - Identification of typical delays and anomalies
- Distribution of packet sizes
 - Workload models for routers
- Burstiness of the traffic on the link over time
 - Provisioning rules for allocating link capacity
- Throughput between pairs of src/dest addresses
 - Detection and diagnosis of performance problems

TCP Header Analysis

- Source and destination port numbers
 - Popular applications; parallel connections
- Sequence/ACK numbers and packet timestamps

 Out-of-order/lost packets; throughput and delay
- Number of packets/bytes per connection
 - Web transfer sizes; frequency of bulk transfers
- SYN flags from client machines
 - Unsuccessful requests; denial-of-service attacks
- FIN/RST flags from client machines
 - Frequency of Web transfers aborted by clients

Packet Contents

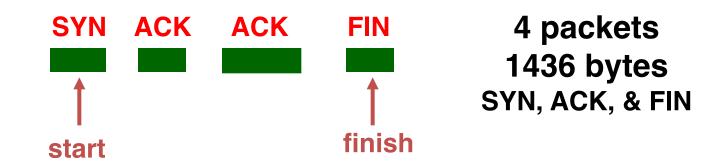

- Application-layer header
 - HTTP and RTSP request and response headers
 - FTP, NNTP, and SMTP commands and replies
 - DNS queries and responses; OSPF/BGP messages
- Application-layer body
 - HTTP resources (or checksums of the contents)
 - User keystrokes in Telnet/Rlogin sessions

Application-Layer Analysis

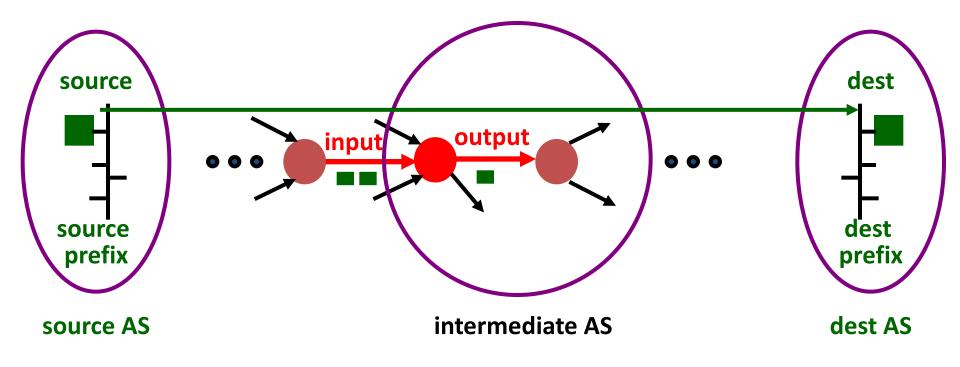
- URLs from HTTP request messages
 - Popular resources/sites; benefits of caching
- Meta-data in HTTP request/response messages
 - Content type, cacheability, change frequency, etc.
 - Browsers, protocol versions, protocol features, etc.
- Contents of DNS messages
 - Common queries, error frequency, query latency
- Contents of Telnet/Rlogin sessions
 - Intrusion detection (break-ins, stepping stones)

Flow Measurement (e.g., NetFlow)

IP Flows


- Set of packets that "belong together"
 - Source/destination IP addresses and port numbers
 - Same protocol, ToS bits, ...
 - Same input/output interfaces at a router (if known)
- Packets that are "close" together in time
 - Maximum spacing between packets (e.g. 30 sec)
 - E.g.: flows 2 and 4 are different flows due to time

Flow Abstraction

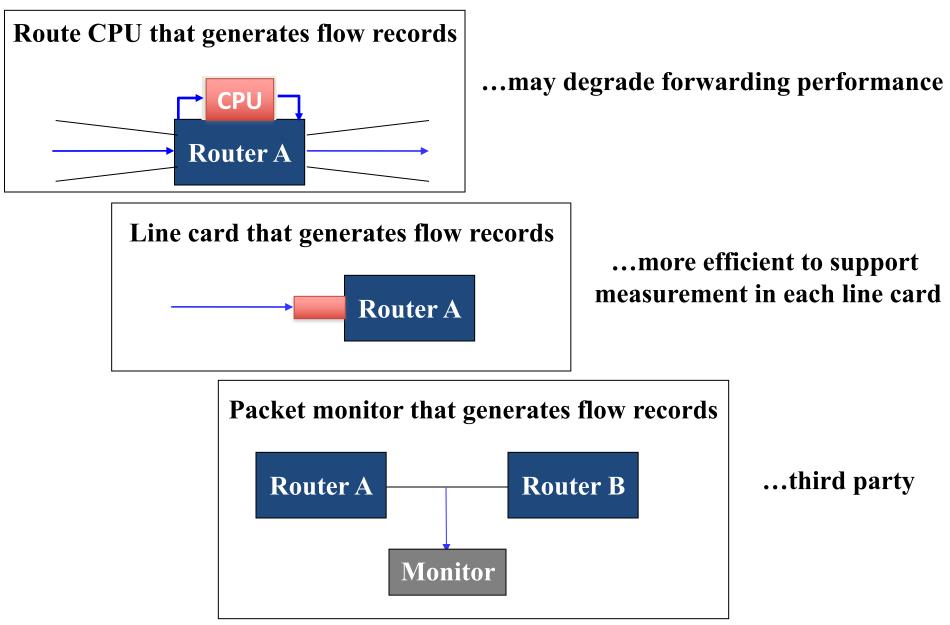

- Not exactly the same as a "session"
 - Sequence of related packets may be multiple flows
 - Related packets may not follow the same links
 - "Session" is hard to measure from inside network
- Motivation for this abstraction
 - As close to a "session" as possible from outside
 - Router optimization for forwarding/access-control
 - ... might as well throw in a few counters

Traffic Statistics (e.g., Netflow)

- Packet header info
 - Source and destination addresses and port #s
 - Other IP & TCP/UDP header fields (protocol, ToS)
- Aggregate traffic information
 - Start and finish time (time of first & last packet)
 - Total # of bytes and number of packets in the flow
 - TCP flags (e.g., logical OR over sequence of packets)

Measuring Traffic as it Flows By

Source and destination: IP header


Source and dest prefix: forwarding table or BGP table

Source and destination AS: BGP table

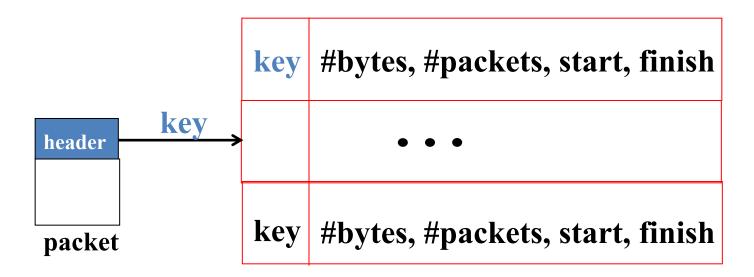
Packet vs. Flow Measurement

- Basic statistics (available from both techniques)
 - Traffic mix by IP addresses, port numbers, protocol
 - Average packet size
- Traffic over time
 - Both: traffic volumes on medium-to-large time scale
 - Packet: burstiness of traffic on a small time scale
- Statistics per TCP connection
 - Both: volume of traffic transferred over the link
 - Packet: frequency of lost or out-of-order packets

Collecting Flow Measurements

Mechanics: Flow Cache

• Maintain a cache of active flows


Storage of byte/packet counts, timestamps, etc.

• Compute a key per incoming packet

Concatenation of source, destination, port #s, etc.

Index into the flow cache based on the key

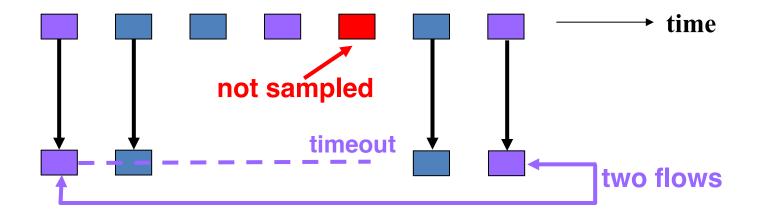
Creation or updating of an entry in the flow cache

Mechanics: Evicting Cache Entries

- Flow timeout
 - Remove flows not receiving a packet recently
 - Periodic sequencing to time out flows
 - New packet triggers the creation of a new flow
- Cache replacement
 - Remove flow(s) when the flow cache is full
 - Evict existing flow(s) upon creating a cache entry
 - Apply eviction policy (LRU, random flow, etc.)
- Long-lived flows
 - Remove flow(s) persisting a long time (e.g., 30 min)

Measurement Overhead

Per-packet overhead


- Computing the key and indexing flow cache
- More work when the average packet size is small
- May not be able to keep up with the link speed

Per-flow overhead

- Creation and eviction of entry in the flow cache
- Volume of measurement data (# of flow records)
- Larger # of flows when # packets per flow is small
- May overwhelm system collecting/analyzing data

Sampling: Packet Sampling

- Packet sampling before flow creation
 - 1-out-of-m sampling of individual packets
 - Creation of flow records over the sampled packets
- Reducing overhead
 - Avoid per-packet overhead on 1 (1/m) packets
 - Avoid creating records for many small flows

BGP Monitoring

Motivation for BGP Monitoring

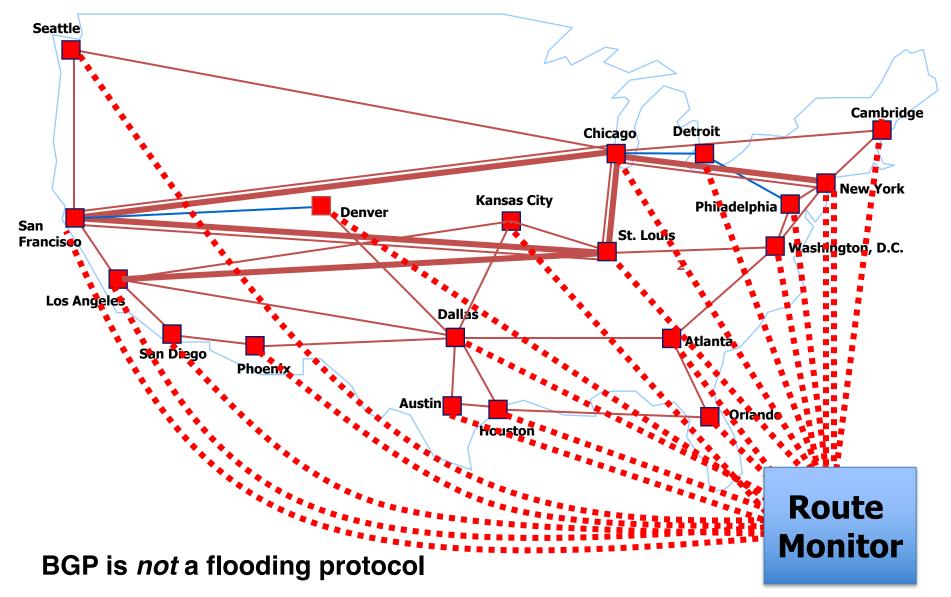
- Visibility into external destinations
 - What neighboring ASes are telling you
 - How you are reaching external destinations
- Detecting anomalies
 - Increases in number of destination prefixes
 - Lost reachability or instability of some destinations
- Input to traffic-engineering tools
 - Knowing the current routes in the network
- Workload for testing routers
 - Realistic message traces to play back to routers

BGP Monitoring: A Wish List

- Ideally: know what the router knows
 - All externally-learned routes
 - Before applying policy and selecting best route
- How to achieve this
 - Special monitoring session on routers that tells everything they have learned
 - Packet monitoring on all links with BGP sessions
- If you can't do that, you could always do...
 - Periodic dumps of routing tables
 - BGP session to learn best route from router

Using Routers to Monitor BGP

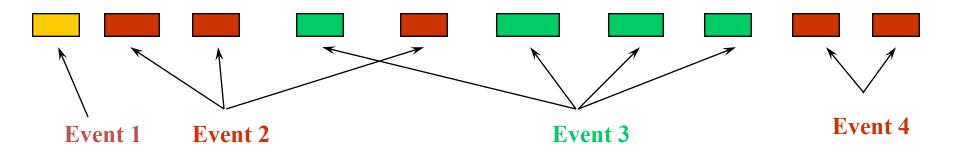
Talk to operational routers using SNMP or telnet at command line


Establish a "passive" BGP session from a workstation running BGP software

- (-) BGP table dumps are expensive
- (+) Table dumps show all alternate routes
- (-) Update dynamics lost
- (-) Restricted to interfaces provided by vendors

- (+) BGP table dumps do not burden operational routers
- (-) Receives only best route from BGP neighbor
- (+) Update dynamics captured
- (+) Not restricted to interfaces provided by vendors

Collect BGP Data From Many Routers


BGP Table ("show ip bgp" at RouteViews)

Network	Next Hop	Metric	LocPrf	Weight	Path		
* 3.0.0.0	205.215.45.50			0	4006 701	80 i	
*	167.142.3.6			0	5056 701	80 i	
*	157.22.9.7			0	715 1 701	80 i	
*	195.219.96.23	9		0	8297 6453	701 8	80 i
*	195.211.29.25	4		0	5409 6667	6427	335
*>	12.127.0.249			0	7018 701	80 i	
*	213.200.87.25	4	929	0	3257 701	80 i	
* 9.184.112.0/20	205.215.45.50			0	4006 6461	3786	i
*	195.66.225.254	4		0	5459 6461	3786	i
*>	203.62.248.4			0	1221 3786	i	
*	167.142.3.6			0	5056 6461	6461	378
*	195.219.96.23	9		0	8297 6461	3786	i
*	195.211.29.25	4		0	5409 6461	3786	i

AS 80 is General Electric, AS 701 is UUNET, AS 7018 is AT&T

AS 3786 is DACOM (Korea), AS 1221 is Telstra

BGP Events

- Group of BGP updates that "belong together"
 Same IP prefix, originating AS, or AS_PATH
- Updates that are "close" together in time
 - Maximum spacing between packets (e.g. 30 sec)
 - E.g.: events 2 and 4 are separated in time

Conclusions

- Measurement is crucial to network operations
 - Measure, model, control
 - Detect, diagnose, fix
- Network measurement is challenging
 - Large volume of measurement data
 - Multi-dimensional data
- Great way to understand the Internet
 - Popular applications, traffic characteristics
 - Internet topology, routing dynamics