

Routing Convergence

Lecture 10 Kyle Jamieson COS 461: Computer Networks

Routing Changes

- Topology changes: new route to the same place
- Host mobility: route to a different place

Topology Changes

Two Types of Topology Changes

- Planned
 - Maintenance: shut down a node or link
 - Energy savings: shut down a node or link
 - Traffic engineering: change routing configuration
- Unplanned Failures
 - Fiber cut,
 faulty equipment,
 power outage,
 software bugs, ...

Detecting Topology Changes

Beaconing

- Periodic "hello" messages in both directions
- Detect a failure after a few missed "hellos"

- Performance trade-offs
 - Detection delay
 - Overhead on link bandwidth and CPU
 - Likelihood of false detection

Routing Convergence: Link-State Routing

Convergence

- Control plane
 - All nodes have consistent information
- Data plane
 - All nodes forward packets in a consistent way

Transient Disruptions

- Detection delay
 - A node does not detect a failed link immediately
 - ... and forwards data packets into a "blackhole"
 - Depends on timeout for detecting lost hellos

Transient Disruptions

- Inconsistent link-state database
 - Some routers know about failure before others
 - Inconsistent paths cause transient forwarding loops

Convergence Delay

- Sources of convergence delay
 - Detection latency
 - Updating control-plane information
 - Computing and install new forwarding tables
- Performance during convergence period
 - Lost packets due to blackholes and TTL expiry
 - Looping packets consuming resources
 - Out-of-order packets reaching the destination
- Very bad for VoIP, online gaming, and video

Slow Convergence in Distance-Vector Routing

- Link cost decreases and recovery
 - Node updates the distance table

- Rule: Least-cost path's cost changed? notify neighbors

t₁

D^Y = Distances known to Y

 \mathbf{t}_2

- Link cost decreases and recovery
 - Node updates the distance table
- 50
- **Rule:** Least-cost path's cost changed? notify neighbors

 D^{Y} = Distances known to Y

- Link cost decreases and recovery
 - Node updates the distance table

Rule: Least-cost path's cost changed? notify neighbors

"good news travels fast"

Link cost increases and failures

 "Count to infinity" problem!

$$\frac{\overset{V}{D}}{\operatorname{to:} X} \begin{array}{c} \overset{V a}{4} & \overset{D^{Y}}{6} & \overset{X}{X} \begin{array}{c} z \\ \hline x \\ \hline d \\ 6 \end{array} \begin{array}{c} \overset{D^{Y}}{4} & \overset{X}{2} \\ \hline x \\ \hline d \\ 6 \end{array} \begin{array}{c} \overset{D^{Y}}{60} & \overset{X}{60} \end{array} \begin{array}{c} \overset{V a}{60} \\ \hline & & & & \\ \hline \end{array} \begin{array}{c} \overset{V a}{50} \\ \hline \end{array} \begin{array}{c} \overset{D^{Z}}{5} & \overset{V a}{X} \\ \hline \end{array} \begin{array}{c} \overset{V a}{50} \\ \hline \end{array} \begin{array}{c} \overset{D^{Z}}{5} \\ \hline \end{array} \begin{array}{c} \overset{X}{5} \\ \hline \end{array} \begin{array}{c} \overset{V a}{50} \\ \hline \end{array} \begin{array}{c} \overset{D^{Z}}{5} \\ \hline \end{array} \begin{array}{c} \overset{X}{5} \\ \hline \end{array} \begin{array}{c} \overset{V a}{50} \\ \hline \end{array} \begin{array}{c} \overset{C (X,Y)}{5} \\ \hline \end{array} \begin{array}{c} \overset{C (X,Y)}{t_{1}} \\ \hline \end{array} \begin{array}{c} \overset{L }{t_{2}} \\ \hline \end{array} \begin{array}{c} \overset{L }{t_{3}} \end{array} \begin{array}{c} \overset{L }{t_{4}} \end{array} \begin{array}{c} \overset{L }{t_{4}} \end{array} \begin{array}{c} \overset{L }{t_{4}} \end{array} \begin{array}{c} \overset{L }{t_{4}} \end{array}$$

Link cost increases and failures

 "Count to infinity" problem!

Distance Vector: Poison Reverse

 If Z routes through Y to X, then Z tells Y its (Z's) distance to X is ∞

(so Y won't route to X via Z)

Distance Vector: Poison Reverse

• Can still have problems in larger networks

- 1. A and B use ACD and BCD, so A and B both "poison" to C.
- 2. But when CD withdrawn (cost goes to infinity), B switches to BACD, so BC no longer poisoned to C.
- 3. C then starts using CBACD. Loop.

Redefining Infinity

Avoid "counting to infinity"

– By making "infinity" smaller!

- Routing Information Protocol (RIP)
 - All links have cost 1
 - Valid path distances of 1 through 15
 - ... with 16 representing infinity
- Used mainly in small networks

Reducing Convergence Time With Path-Vector Routing

(e.g.: Border Gateway Protocol)

Path-Vector Routing

- Extension of distance-vector routing
 - Support flexible routing policies
 - Avoid count-to-infinity problem
- Key idea: advertise the entire path
 - Distance vector: send distance metric per dest d
 - Path vector: send the entire path for each dest d

Faster Loop Detection

- Node can easily detect a loop
 - Look for its own node identifier in the path
 - E.g., node 1 sees itself in the path "3, 2, 1"
- Node can simply discard paths with loops
 - E.g., node 1 simply discards the advertisement

BGP Session Failure

- BGP runs over TCP
 - BGP only sends updates when changes occur
 - TCP doesn't detect lost connectivity on its own
- Detecting a failure

 Keep-alive: 60 seconds
 Hold timer: 180 seconds

 Reacting to a failure

 Discard all routes learned from neighbor
 - Send new updates for any routes that change

Routing Change: Before and After

Routing Change: Path Exploration

- AS 1
 - Delete the route (1,0)
 - Switch to next route (1,2,0)
 - Send route (1,2,0) to AS 3
- AS 3
 - Sees (1,2,0) replace (1,0)
 - Compares to route (2,0)
 - Switches to using AS 2

Routing Change: Path Exploration

1,0)

(1,2,0)

(1,3,0)

- Initial: All AS use direct
- Then destination 0 dies
 - All ASes lose direct path
 - All switch to longer paths
 - Eventually withdrawn
- How many intermediate routes following (2,0) withdrawal until no route known to 2?

 $(2,0) \rightarrow (2,1,0) \rightarrow (2,3,0) \rightarrow (2,1,3,0) \rightarrow \mathsf{null}$

2 (3,1,0)

2,0)

(2,1,0)

(2,3,0)

(2,1,3,0)

BGP Converges Slowly

- Path vector avoids count-to-infinity
 - But, ASes still must explore many alternate paths to find highest-ranked available path
- Fortunately, in practice
 - Most popular destinations have stable BGP routes
 - Most instability lies in a few unpopular destinations
- Still, lower BGP convergence delay is a goal
 Can be tens of seconds to tens of minutes

BGP Instability

Stable Paths Problem (SPP) Instance

- Node
 - BGP-speaking routerNode 0 is destination
- Edge
 BGP adjacency
- Permitted paths
 - Set of routes to 0 at each node
 - Ranking of the paths

SPP Solution

• Solution is:

- Path assignments per node
 - Can be the "null" path
- If node u has path uwP
 - {u,w} is edge in graph
 - w is assigned path wP
- Each node is assigned

- Highest ranked path consistent with its neighbors

210

Stable Paths Problem (SPP) Instance

- 1 will use a direct path to 0
 (Y) True (M) False
- 5 has a path to 0
 (Y) True (M) False

Stable Paths Problem (SPP) Instance

- 1 will use a direct path to 0 210 (M) False (Y) True 20 2 5 has a path to 0 0
 - (Y) True (M) False

An SPP May Have No Solution

Avoiding BGP Instability

- Detecting conflicting policies
 - Computationally expensive
 - Requires too much cooperation
- Detecting oscillations
 - Observing the repetitive BGP routing messages
- Restricted routing policies and topologies

– Policies based on business relationships

Conclusion

- The only constant is change
 - Planned topology and configuration changes
 - Unplanned failure and recovery
- Routing-protocol convergence
 - Transient period of disagreement
 - Blackholes, loops, and out-of-order packets
- Routing instability
 - Permanent conflicts in routing policy
 - Leading to bi-stability or oscillation