
TCP Congestion Control
Kyle Jamieson

COS 461: Computer Networks

www.cs.princeton.edu/courses/archive/fall20/cos461/

Network Congestion: Context
• Best-effort network does not “block” calls
– So, they can easily become overloaded
– Congestion == “Load higher than capacity”

• Examples of congestion
– Link layer: Ethernet frame collisions
– Network layer: full IP packet buffers

• Excess packets are simply dropped
– And the sender can simply retransmit

queue

2

Problem: Congestion Collapse
• Easily leads to congestion collapse
– Senders retransmit the lost packets
– Leading to even greater load
– … and even more packet loss

Load

Goodput
“congestion

collapse”
Increase in load that
results in a decrease
in useful work done.

3

Detect and Respond to Congestion

• What does the end host see?
• What can the end host change?
• Distributed Resource Sharing

4

?

Detecting Congestion
• Link layer
–Carrier sense multiple access
– Seeing your own frame collide with others

• Network layer
–Observing end-to-end performance
–Packet delay or loss over the path

5

Responding to Congestion
• Upon detecting congestion
– Decrease the sending rate

• But, what if conditions change?
– If more bandwidth becomes available,
– … unfortunate to keep sending at a low rate

• Upon not detecting congestion
– Increase sending rate, a little at a time
– See if packets get through

6

TCP seeks “Fairness”

8

Phase Plots

Fairness
Line

x1 = x2

User 1’s Allocation x1

User 2’s
Allocation x2

9

Phase Plots

User 1’s Allocation x1

User 2’s
Allocation x2

Overload

Under
utilization

Fairness
Line

x1 = x2

Max
Throughput

10

Phase Plots

User 1’s Allocation x1

User 2’s
Allocation x2

Overload

Under
utilization

Fairness
Line

x1 = x2

Max
Throughput

11

Phase Plots

User 1’s Allocation x1

User 2’s
Allocation x2

Overload

Under
utilization

Fairness
Line

x1 = x2

Max
Throughput

12

Phase Plots

User 1’s Allocation x1

User 2’s
Allocation x2

Overload

Under
utilization

Fairness
Line

x1 = x2

Max
Throughput

13

Phase Plots

Efficiency
Line

User 1’s Allocation x1

User 2’s
Allocation x2

Optimal
point

Overload

Under
utilization

Fairness
Line

x1 = x2

14

Additive Increase/Decrease

Efficiency
Line

User 1’s Allocation x1

User 2’s
Allocation x2

Fairness
Line

x1 = x2AIAD

15

Multiplicative Increase/Decrease

Efficiency
Line

User 1’s Allocation x1

User 2’s
Allocation x2

Fairness
Line

x1 = x2
MIMD

16

Additive Increase / Multiplicative Decrease

Efficiency
Line

User 1’s Allocation x1

User 2’s
Allocation x2

Fairness
Line

x1 = x2
AIMD

TCP Congestion Control
• Additive increase, multiplicative decrease
– On packet loss, divide congestion window in half
– On success for last window, increase window linearly

Window

halved

Loss

17

Time

Why Multiplicative?
• Respond aggressively to bad news
– Congestion is (very) bad for everyone
– Need to react aggressively

Examples of exponential backoff:
– TCP: divide sending rate in half
– Ethernet: double retransmission timer

• Nice theoretical properties
– Makes efficient use of network resources

18

TCP Congestion Control

19

Congestion in a Drop-Tail FIFO Queue
• Access to the bandwidth: first-in first-out queue
– Packets transmitted in the order they arrive

20

✗

• Access to the buffer space: drop-tail queuing
– If the queue is full, drop the incoming packet

How it Looks to the End Host
• Delay: Packet experiences high delay
• Loss: Packet gets dropped along path

• How does TCP sender learn this?
– Delay: Round-trip time estimate
– Loss: Timeout and/or duplicate acknowledgments

✗

TCP Congestion Window
• Each TCP sender maintains a congestion window
– Max number of bytes to have in transit (not yet ACK’d)

• Adapting the congestion window
– Decrease upon losing a packet: backing off
– Increase upon success: optimistically exploring
– Always struggling to find right transfer rate

• Tradeoff
– Pro: avoids needing explicit network feedback
– Con: continually under- and over-shoots “right” rate

22

Additive Increase, Multiplicative Decrease

• How much to adapt?
– Additive increase: On success of last window of

data, increase window by 1 Max Segment Size (MSS)
– Multiplicative decrease: On loss of packet, divide

congestion window in half

• Much quicker to slow down than speed up?
– Over-sized windows (causing loss) are much worse

than under-sized windows (causing lower thruput)
– AIMD: A necessary condition for stability of TCP

23

Leads to the TCP “Sawtooth”

24

Window

halved

Loss

Time

Receiver Window vs. Congestion Window

• Flow control
– Keep a fast sender from overwhelming a slow receiver

• Congestion control
– Keep a set of senders from overloading the network

• Different concepts, but similar mechanisms
– TCP flow control: receiver window
– TCP congestion control: congestion window
– Sender TCP window =

min { congestion window, receiver window }

25

Starting a New Flow

26

How Should a New Flow Start?

27

Time

Window

halved

Loss

But, could take a long
time to get started!

Start slow (a small CWND) to avoid overloading network

“Slow Start” Phase
• Start with a small congestion window
– Initially, CWND is 1 MSS
– So, initial sending rate is MSS / RTT

• Could be pretty wasteful
– Might be much less than actual bandwidth
– Linear increase takes a long time to accelerate

• Slow-start phase (really “fast start”)
– Sender starts at a slow rate (hence the name)
– … but increases rate exponentially until the first loss

28

Slow Start in Action

29

Double CWND per round-trip time

D A D D A A D D

A A

D

A

Src

Dest

D

A

1 2 4 8

Slow Start and the TCP Sawtooth

• TCP originally had no congestion control
– Source would start by sending entire receiver window
– Led to congestion collapse!
– “Slow start” is, comparatively, slower

30

Window

halved

Loss

Exponential “slow start” Time

Two Kinds of Loss in TCP
• Timeout vs. Triple Duplicate ACK
– Which suggests network is in worse shape?

• Timeout
– If entire window was lost, buffers may be full
– ...blasting entire CWND would cause another burst
– ...be aggressive: start over with a low CWND

• Triple duplicate ACK
– Might be do to bit errors, or “micro” congestion
– ...react less aggressively (halve CWND)

31

Repeating Slow Start After Timeout

32

t

Window
timeout

Repeating Slow Start After Timeout

33

t

Window

Slow-start restart: Go back to CWND of 1, but take
advantage of knowing the previous value of CWND.

Slow start until
reaching half of
previous cwnd.

timeout

Repeating Slow Start After Idle Period

• Suppose a TCP connection goes idle for a while

• Eventually, the network conditions change
– Maybe many more flows are traversing the link

• Dangerous to start transmitting at the old rate
– Previously-idle TCP sender might blast network
– … causing excessive congestion and packet loss

• So, some TCP implementations repeat slow start
– Slow-start restart after an idle period

34

Fairness

35

TCP Achieves a Notion of Fairness
• Effective utilization is not only goal
– We also want to be fair to various flows

• Simple definition: equal bandwidth shares
– N flows that each get 1/N of the bandwidth?

• But, what if flows traverse different paths?
– Result: bandwidth shared in proportion to RTT

36

What About Cheating?
• Some senders are more fair than others
– Using multiple TCP connections in parallel (BitTorrent)
– Modifying the TCP implementation in the OS
• Some cloud services start TCP at > 1 MSS

– Use the User Datagram Protocol

• What is the impact?
– Good senders slow down to make room for you
– You get an unfair share of the bandwidth

37

Conclusions
• Congestion is inevitable
– Internet does not reserve resources in advance
– TCP actively tries to push the envelope

• Congestion can be handled
– Additive increase, multiplicative decrease
– Slow start and slow-start restart

• Fundamental tensions
– Feedback from the network?
– Enforcement of “TCP friendly” behavior?

38

