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Network Congestion: Context
• Best-effort network does not “block” calls
– So, they can easily become overloaded
– Congestion == “Load higher than capacity”

• Examples of congestion
– Link layer: Ethernet frame collisions
– Network layer: full IP packet buffers 

• Excess packets are simply dropped
– And the sender can simply retransmit

queue
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Problem: Congestion Collapse
• Easily leads to congestion collapse
– Senders retransmit the lost packets
– Leading to even greater load
– … and even more packet loss

Load

Goodput
“congestion

collapse”
Increase in load that 
results in a decrease
in useful work done.
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Detect and Respond to Congestion

• What does the end host see?
• What can the end host change?
• Distributed Resource Sharing
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Detecting Congestion
• Link layer
–Carrier sense multiple access 
– Seeing your own frame collide with others

• Network layer
–Observing end-to-end performance
–Packet delay or loss over the path
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Responding to Congestion
• Upon detecting congestion
– Decrease the sending rate

• But, what if conditions change?
– If more bandwidth becomes available, 
– … unfortunate to keep sending at a low rate

• Upon not detecting congestion
– Increase sending rate, a little at a time
– See if packets get through
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TCP seeks “Fairness”
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Additive Increase/Decrease
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TCP Congestion Control
• Additive increase, multiplicative decrease
– On packet loss, divide congestion window in half
– On success for last window, increase window linearly

Window

halved

Loss
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Why Multiplicative?
• Respond aggressively to bad news
– Congestion is (very) bad for everyone
– Need to react aggressively

Examples of exponential backoff:
– TCP: divide sending rate in half
– Ethernet: double retransmission timer

• Nice theoretical properties
– Makes efficient use of network resources
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TCP Congestion Control
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Congestion in a Drop-Tail FIFO Queue
• Access to the bandwidth: first-in first-out queue
– Packets transmitted in the order they arrive
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✗

• Access to the buffer space: drop-tail queuing
– If the queue is full, drop the incoming packet



How it Looks to the End Host
• Delay:  Packet experiences high delay
• Loss:  Packet gets dropped along path

• How does TCP sender learn this?
– Delay: Round-trip time estimate
– Loss:   Timeout and/or duplicate acknowledgments

✗



TCP Congestion Window
• Each TCP sender maintains a congestion window
– Max number of bytes to have in transit (not yet ACK’d)

• Adapting the congestion window
– Decrease upon losing a packet: backing off
– Increase upon success: optimistically exploring
– Always struggling to find right transfer rate

• Tradeoff
– Pro: avoids needing explicit network feedback
– Con: continually under- and over-shoots “right” rate
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Additive Increase, Multiplicative Decrease 

• How much to adapt?
– Additive increase:  On success of last window of 

data, increase window by 1 Max Segment Size (MSS)
– Multiplicative decrease:  On loss of packet, divide 

congestion window in half

• Much quicker to slow down than speed up?
– Over-sized windows (causing loss) are much worse 

than under-sized windows (causing lower thruput)
– AIMD:  A necessary condition for stability of TCP
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Leads to the TCP “Sawtooth”

24

Window

halved

Loss

Time



Receiver Window vs. Congestion Window

• Flow control
– Keep a fast sender from overwhelming a slow receiver

• Congestion control
– Keep a set of senders from overloading the network

• Different concepts, but similar mechanisms
– TCP flow control:  receiver window
– TCP congestion control:  congestion window
– Sender TCP window = 

min { congestion window, receiver window }
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Starting a New Flow
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How Should a New Flow Start?
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But, could take a long 
time to get started!

Start slow (a small CWND) to avoid overloading network



“Slow Start” Phase
• Start with a small congestion window
– Initially, CWND is 1 MSS
– So, initial sending rate is MSS / RTT

• Could be pretty wasteful
– Might be much less than actual bandwidth
– Linear increase takes a long time to accelerate

• Slow-start phase (really “fast start”)
– Sender starts at a slow rate (hence the name)
– … but increases rate exponentially until the first loss
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Slow Start in Action
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Slow Start and the TCP Sawtooth

• TCP originally had no congestion control
– Source would start by sending entire receiver window
– Led to congestion collapse! 
– “Slow start” is, comparatively, slower
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Two Kinds of Loss in TCP
• Timeout vs. Triple Duplicate ACK
– Which suggests network is in worse shape?

• Timeout
– If entire window was lost, buffers may be full
– ...blasting entire CWND would cause another burst
– ...be aggressive: start over with a low CWND

• Triple duplicate ACK
– Might be do to bit errors, or “micro” congestion
– ...react less aggressively  (halve CWND)
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Repeating Slow Start After Timeout
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Repeating Slow Start After Timeout
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t

Window

Slow-start restart: Go back to CWND of 1, but take 
advantage of knowing the previous value of CWND.

Slow start until 
reaching half of 
previous cwnd.

timeout



Repeating Slow Start After Idle Period

• Suppose a TCP connection goes idle for a while

• Eventually, the network conditions change
– Maybe many more flows are traversing the link

• Dangerous to start transmitting at the old rate
– Previously-idle TCP sender might blast network
– … causing excessive congestion and packet loss

• So, some TCP implementations repeat slow start
– Slow-start restart after an idle period
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Fairness
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TCP Achieves a Notion of Fairness
• Effective utilization is not only goal
– We also want to be fair to various flows

• Simple definition: equal bandwidth shares
– N flows that each get 1/N of the bandwidth?

• But, what if flows traverse different paths?
– Result: bandwidth shared in proportion to RTT
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What About Cheating?
• Some senders are more fair than others
– Using multiple TCP connections in parallel (BitTorrent)
– Modifying the TCP implementation in the OS
• Some cloud services start TCP at > 1 MSS

– Use the User Datagram Protocol

• What is the impact?
– Good senders slow down to make room for you
– You get an unfair share of the bandwidth
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Conclusions
• Congestion is inevitable
– Internet does not reserve resources in advance
– TCP actively tries to push the envelope

• Congestion can be handled
– Additive increase, multiplicative decrease
– Slow start and slow-start restart

• Fundamental tensions
– Feedback from the network?
– Enforcement of “TCP friendly” behavior?

38


