COS 461 Computer Networks Lecture 4: Hubs, Switches, and Routers

Kyle Jamieson Fall 2020

Today: Hubs, Switches, and Routers, Oh My!

Terminology

- Hubs and Repeaters
 - Connect machines on same "layer 2" LAN
 - Broadcast: All frames are sent out all physical ports
- Switches and Bridges
 - Connect machines on same "layer 2" LAN
 - Only send frames to selected physical port based on destination MAC address
- Routers
 - Connect between LANs at "layer 3", e.g., wide area
 - Only send packet to selected physical port based on destination IP address

"Layer 2" Hubs and Switches

Physical Layer: Repeaters

- Distance limitation in local-area networks
 - Electrical signal becomes weaker as it travels
 - Imposes a limit on the length of a LAN
- Repeaters join LANs together
 - Analog electronic device
 - Continuously monitors electrical signals
 - Transmits an amplified copy

Physical Layer: Hubs

- Joins multiple input lines electrically
 - Designed to hold multiple line cards
 - Do not necessarily amplify the signal
- Very similar to repeaters
 - Also operates at the physical layer

Limitations of Repeaters and Hubs

- One large shared link
 - Each bit is sent everywhere
 - So, aggregate throughput is limited
- Cannot support multiple LAN technologies
 - Does not buffer or interpret frames
 - Can't interconnect between different rates/formats
- Limitations on maximum nodes and distances
 - Shared medium imposes length limits
 - E.g., cannot go beyond 2500 meters on Ethernet

Link Layer: Bridges

- Connects two or more LANs at the link layer
 - Extracts destination address from the frame
 - Looks up the destination in a table
 - Forwards the frame to the appropriate segment
- Each segment can carry its own traffic

Link Layer: Switches

- Typically connects individual computers

 A switch is essentially the same as a bridge
 though typically used to connect hosts
- Supports concurrent communication
 Host A can talk to C, while B talks to D

Bridges/Switches: Traffic Isolation

- Switch filters packets
 - Frame only forwarded to the necessary segments
 - Segments can support separate transmissions

Self Learning: Building the Table

- When a frame arrives
 - Inspect the *source* MAC address
 - Associate the address with the *incoming* interface
 - Store the mapping in the switch table
 - Use a timer to eventually forget the mapping

Self Learning: Handling Misses

- When frame arrives with unfamiliar destination
 - Forward the frame out all of the interfaces
 - ... except for the one where the frame arrived
 - Hopefully, this case won't happen very often!

Switches vs. Hubs

Compared to hubs, Ethernet switches support

(Y) Larger geographic span

(M) Similar span

(C) Smaller span

Compared to hubs, switches provide

 (Y) Higher load on links
 (M) Less privacy
 (C) Traffic isolation

Routers: Looking closer...

Basic Router Architecture

- Each switch/router has a forwarding table
 - Maps destination address to outgoing interface

- Basic operation
 - 1. Receive packet
 - 2. Look at header to determine destination address
 - 3. Look in forwarding table to determine output interface
 - 4. Modify packet header (e.g., decr TTL, update chksum)
 - 5. Send packet to output interface

Basic Router Architecture

- Basic operation
 - 1. Receive packet
 - 2. Look at header to determine destination address
 - 3. Look in forwarding table to determine output interface

Line Card (I/O)

- 4. Modify packet header (e.g., decr TTL, update chksum)
- 5. Send packet to output interface

Router

Router

Lookup algorithm depends on protocol

Protocol	Mechanism	Techniques
Ethernet (48 bits) MPLS ATM	Exact Match	 Direct lookup Associative lookup Hashing Binary tree
IPv4 (32 bits) IPv6 (128 bits)	Longest-Prefix Match	Radix trieCompressed trieTCAM

Longest Prefix Match (LPM)

- Each packet has destination IP address
- Router looks up table entry that matches address

	Prefix	Output
	68.208.0.0/12	1
68.211.6.120	68.211.0.0/17	1
08.211.0.120	68.211.128.0/19	2
	68.211.160.0/19	2
	68.211.192.0/18	1

LPM: Motivation

- Each packet has destination IP address
- Router looks up table entry that matches address
- Benefits of CIDR allocation and LPM

Efficiency: Prefixes can be allocated at much finer granularity

Hierarchical aggregation: Upstream ISP can aggregate
 2 contiguous prefixes from downstream ISPs to
 shorter prefix

Software LPM lookup using trie

- Prefixes "spelled out" by following path from root
- To find the best prefix spell out address in trie

	Prefixes
Α	111*
В	10*
С	1010*
D	10101

Software LPM lookup using trie

- Prefixes "spelled out" by following path from root
- To find the best prefix spell out address in trie

- 1 lookup per level → max 32 lookups/address!
- Too slow:
 - E.g., "Optical Carrier 48" line
 (2.5 Gbps) requires 160ns
 lookup ... or 4 memory
 accesses

Software LPM lookup: k-ary trie (k=2)

Hardware for LPM lookup

- Content-Address Memory (CAM)
 - Input: tag (address)
 - Output: value (port
 - Exact match, but O(1) in hardware
- Ternary CAM
 - Can have wildcards: 0, 1, *
 - "value" memory cell and "mask" (care / don't care) cell
- LPM via TCAM
 - In parallel, search all prefixes for all matches
 - Then choose longest match
 - Trick: choose first match, but already sorted by prefix length

Example: LPM with a TCAM

match lines

Decision: Forwarding table per line card

Decision: Crossbar switch

Decision: Crossbar switch

Shared bus

- Only one input can speak to one output at a time

- Crossbar switch / switched backplane
 Input / output pairs that don't compete can send
 - in same timeslot

Crossbar switching

- Every input port has connection to every output port
- In each timeslot, each input connected to zero or more outputs

Crossbar switching

- Every input port has connection to every output port
- In each timeslot, each input connected to zero or more outputs

Everything gets complicated...

- Problem: Head-of-line blocking
 - The packet in front of queue blocks packets behind it from being processed
 - Say first packet at input 1 wants to go to output 5; second packet at 1 that wants 4 is still blocked

Everything gets complicated...

- Solution: Virtual output queues
 - One queue at input, per output port (for all inputs)
 - So avoids head-of-line blocking during crossbar scheduling

Processo Data, Control, & Management Planes Switching Fabric Control Data Management **Event** Time-Human Packet (ns) scale (10 ms to sec) (min to hours) Forwarding, buffering, Routing, Analysis, **Tasks** configuration filtering, signaling scheduling Line-card Router Humans or Location software hardware scripts

Cisco 8000 Series Routers

- Up to 648 400 GbE
- 260 Tbps backplane

Conclusions

- Physical devices sharing L2 & L3 networks have many common features
 - Forward table lookups
 - Queueing and backplane switching
 - Fast vs. slow paths
 - Switches and routers separate routing decisions (control plane) from forwarding actions (data plane)
- High speed necessitates innovation
 - Specialized hardware
 - Software algorithms