Software Verification
(preview of COS 510 “Programming Languages”)

Andrew W. Appel

Princeton
2 University

Formal reasoning
about programs

Functional
Programming

Proving your
(functional)
programs correct

Formal reasoning
about programs and programming languages

Specification
of programming
languages

intro to
Formal
Logic

Imperative
Programming

Functional
Programming

Proving your
(functional)
programs correct

Proving
your type

Proving
Hoare Logic

Proving your
(imperative)
programs correct

Which of these things do we do
B machme" With pencil+paper?

~'-.ﬁ,~ hhhhhh

Specification'
ol of programming
languages

\ intro to
Formal

Imperative
Programming

Functional
Programming

Proving your
(functional)
programs correct

Proving
your type

Proving
Hoare Logic

Proving your
(imperative)
programs correct

We can do all of these
By machine! hencil+paper? Really?
B AN "
o T

intro to _/ Specification Imperative
Formal Functional 2\ of programming A\ Programming
Logic Programming languages
Proving your Proving Proving

(functional)
rograms correct

your type Hoare Logic

Proving your
(imperative)
programs correct

COS 510: Machine-checked, formal reasoning
about programs and programming languages

Imperative
Functional Programming
Programming

Proving your Proving

(functional) Hoare Logic
programs correct

intro to
Formal

Logic

Specification
of programming
languages

Proving
your type

Proving your
(imperative)
programs correct

EXAMPLE: LENGTH, APP

% Coglde
File Edit View Navigation Templates

dlec.v
Require Import List.
Fixpoint length {A} (xs: list A) : nat :=

match xs with

| nil == 0
| x:xs' == 1 + length xs'
end|

Eval compute in length (1::2::3::4:mnil).

Fixpoint app {A} (xs ys: list A) : list A ==
match xs with

| nil == ys
| x::xs' == x = app xs' ys
end.

Eval compute in app (1::2::3:nil) (7::8:nil).

Eval compute in length (app (1::2::3::nil) (7::8::nil)).

Ready

Queries

Tools

Compile Windows

Messages

A

Errors

Line:

7 Char:

Help

6

A

Jobs

(O

% Coglde
File Edit View Navigation Templates

dlec.v
Require Import List.
Fixpoint length {A} (xs: list A) : nat :=

match xs with

| nil == 0
| x:xs' == 1 + length xs'
end.

Eval compute in length (1::2::3::4:mil).

Fixpoint app {A} (xs ys: list A) : list A ==
match xs with

| nil == ys
| x::xs' == x = app xs' ys
end.

Eval compute in app (1::2::3:nil) (7::8:nil).

Eval compute in length (app (1::2::3::nil) (7::8::nil)).

Ready

Queries

Tools

Compile Windows Help

Messages o~

Errors

s hat

Line:

g Char: 42

A

Jobs

N

% Coglde - O x
File Edit View Navigation Templates Queries Tools Compile Windows Help

dlec.v
Require Import List.
Fixpoint length {A} (xs: list A) : nat :=

match xs with

| nil == 0
| x:xs' == 1 + length xs'
end.

Eval compute in length (1::2::3::4:mil).

Fixpoint app {A} (xs ys: list &) : list A :=

match xs with

|r1i1==-y5 Messages -~ Errors | o~ Jobs ~
| x:xs' == x = app xs' ys
end.

Eval compute in app (1::2::3:nil) (7::8:nil).

Eval compute in length (app (1::2::3::nil) (7::8::nil)).

Ready Line: 17 Char: 1 0/0

i IS

% Coglde
File Edit View Navigation Templates

dlec.v
Require Import List.
Fixpoint length {A} (xs: list A) : nat :=

match xs with

| nil == 0
| x:xs' == 1 + length xs'
end.

Eval compute in length (1::2::3::4:mil).

Fixpoint app {A} (xs ys: list &) : list A :=

match xs with

| nil == ys
| x:xs' == x = app xs' ys
end.

Queries

Eval compute in app (1::2::3:nil) (7::8:nil)

Eval compute in length (app (1::2::3::nil) (7::8::nil)).

Ready

Tools

Compile Windows Help

Messages o~ Errors

=1:2:23:7:82nil
- list nat

Line: 18 Char: 48

A

Jobs

TN O

% Coglde
File Edit View Navigation Templates

dlec.v
Require Import List.
Fixpoint length {A} (xs: list A) : nat :=

match xs with

| nil == 0
| x:xs' == 1 + length xs'
end.

Eval compute in length (1::2::3::4:mil).

Fixpoint app {A} (xs ys: list &) : list A :=

match xs with|

| nil == ys
| x:xs' == x = app xs' ys
end.

Eval compute in app (1::2::3::nil) (7::8:nil).

Eval compute in length (app (1::2::3::nil) (7::8::nil)).

Ready

Queries

Tools

Compile Windows Help

Messages

” Errors

s hat

Line:

13 Char: 15

A

Jobs

i I

% Coglde
File Edit View MNavigation Templates Queries

dlec.v

Theorem app_length: forall {a} (xs ys: list &),

length (app xs ys) = length xs + length ys.
Proof.
Qed.

Ready

Tools

Compile Windows

Messages

” Errors

Line:

52 Char:

Help

1

E

Jobs

E

% Coglde

— >

File Edit View Navigation Templates Queries Tools Compile Windows Help

dlec.v

1 subgoal

Theorem app_length: forall {A} (xs ys: list &), (1/1)

length (app xs ys) = length xs + length ys. forall (A : Type) (xs ys : list &),
Proof) length (app xs ys) = length xs + length ys
Qed.

Messages -~ Errors 2 Jobs

Ready, proving app_length Line: 36 Char: 7 o/0

-
14N

% Coglde

File Edit View MNavigation Templates Queries

dlec.v

Theorem app_length: forall {a} (xs ys: list &),

length (app xs ys) = length xs + length ys.
Proof.
intros.

|
Qed.

Ready, proving app_length

Tools Compile Windows Help

1 subgoal

Al Type

xs, ys: list A

(1/1)
length (app xs ys) = length xs + length ys

Messages -~ Errors » Jobs

Line: 38 Char: 1

1N >

% Coglde - O x
File Edit View Navigation Templates Queries Tools Compile Windows Help
dlec.v
2 subgoals
Al Type
Theorem app_length: forall {a} (xs ys: list &), ys:list A
length (app xs ys) = length xs + length ys. (1/2)
Proof. length (app nil ys) = length nil + length ys
intros. (2/2)
induction x5| length (app (a :: xs) ys) =
- (* base case *) length (a :: xs) + length ys
simpl.
reflexivity.
- (* inductive case *)
simpl.
reflexivity.
QEd. “ESSEQES e Errors e Jl:le .l
Ready, proving app_length Line: 38 Char: 14 0/0

% Coglde
File Edit View Navigation Templates Queries Tools Compile Windows Help

dlec.v
1 subgoal
Al Type
Theorem app_length: forall {a} (xs ys: list &), ys:list A
length (app xs ys) = length xs + length ys. (1/1)
Proof. length (app nil ys) = length nil + length ys
intros.

induction xs.
= (* base case *)
simpl.
reflexivity.
- (* inductive case *)
simpl.
reflexivity.

Qed.

Messages -~ Errors » Jobs

Ready, proving app_length Line: 44 Char: 14 o/0

TN S

% Coglde - O x
File Edit View Navigation Templates Queries Tools Compile Windows Help

dlec.v

1 subgoal
Al Type
Theorem app_length: forall {a} (xs ys: list &), ys:list A
length (app xs ys) = length xs + length ys. (1/1)
Proof. length ys = length ys
intros.
induction xs.
- (* base case *)
simpl.
reflexivity.
- * inductive case * |
simpl.
reflexivity.
QEd. Hessages e Errors e Jl:lb‘_:r]

Ready, proving app_length Line: 42 Char: 23 o/0

N O

% Coglde
File Edit View Navigation Templates Queries Tools Compile Windows Help

dlec.v
1 subgoal
Al Type
Theorem app_length: forall {a} (xs ys: list &), ys:list A
length (app xs ys) = length xs + length ys. (1/1)
Proof. length (app nil ys) = length nil + length ys
intros.

induction xs.
= (* base case *)
simpl.
reflexivity.
- (* inductive case *)
simpl.
reflexivity.

Qed.

Messages -~ Errors » Jobs

Ready, proving app_length Line: 44 Char: 14 o/0

N

% Coglde - O x
File Edit View Navigation Templates Queries Tools Compile Windows Help

dlec.v

1 subgoal
Al Type
Theorem app_length: forall {a} (xs ys: list &), ys:list A
length (app xs ys) = length xs + length ys. (1/1)
Proof. length ys = length ys
intros.
induction xs.
- (* base case *)
simpl.
reflexivity.
- * inductive case * |
simpl.
reflexivity.
QEd. Hessages e Errors e Jl:lb‘_:r]

Ready, proving app_length Line: 42 Char: 23 o/0

200 O

% Coglde
File Edit View MNavigation Templates Queries

dlec.v

Theorem app_length: forall {a} (xs ys: list &),
length (app xs ys) = length xs + length ys.
Proof.
intros.
induction xs.
- (* base case *)
simpl.
reflexivity |
- (* inductive case *)
simpl.
reflexivity.

Qed.

Ready, proving app_length

Tools Compile Windows Help

This subproof is complete, but there are some
unfocused goals:

(1/1)
length (app (a :: xs) ys) =
length (a :: xs) + length ys
Messages -~ Errors 2 Jobs

Line: 41 Char: 15

21N

~

% Coglde

File Edit View Navigation Templates Queries Tools Compile Windows Help

dlec.v
1 subgoal
Al Type
Theorem app_length: forall {a} (xs ys: list &), a:A
length (app xs ys) = length xs + length ys. xs, ys:list A

Proof. IHxs : length (app xs ys) =

intros. length xs + length ys

induction xs.

- (* base case *) length (app (a :: xs) ys) =
simpl. length (a :: xs) + length ys
reflexivity.

= [* inductive case *
simpl.

reflexivity.

Qed. Messages -~ Errors »
Ready, proving app_length Line: 42 Char: 23

(1/1)

Jobs

5 IR

% Coglde - O x
File Edit View Navigation Templates Queries Tools Compile Windows Help
dlec.v
1 subgoal
Al Type
Theorem app_length: forall {a} (xs ys: list &), a:A
length (app xs ys) = length xs + length ys. xs, ys:list A
Proof. IHxs : length (app xs ys) =
intros. length xs + length ys
induction xs. (1/1)
- (* base case *) S (length (app xs ys)) =
simpl. s length xs + length ys
reflexivity.
- (* inductive case *)
simpl|
reflexivity.
QEd. “ESSEQES s Errors s Jl:le .l
Ready, proving app_length Line: 43 cChar: 8 o/0

2 IS

% Coglde

File Edit View MNavigation Templates Queries

dlec.v

Theorem app_length: forall {a} (xs ys: list &),
length (app xs ys) = length xs + length ys.
Proof.
intros.
induction xs.
- (* base case *)
simpl.
reflexivity.
- (* inductive case *)
simpl|
reflexivity.
Qed.

Ready, proving app_length

Tools Compile Windows Help

1 subgoal
Al Type
a:A
xs, ys:list A
IHxs : length (app xs ys) =
length xs + length ys
(1/1)
S (length (app xs ys)) =
s length xs + length ys
Messages -~ Errors 2 Jobs

In environment
A:Type
a:A
xs, ys - list A
IHxs : length (app xs ys) =
length xs + length ys
Unable to unify "s (length xs + length ys)"
with "s (length (app xs ys))".

Line: 43 Char: 8

244 O

% Coglde - O x
File Edit View Navigation Templates Queries Tools Compile Windows Help
dlec.v
1 subgoal
Al Type
Theorem app_length: forall {a} (xs ys: list &), a:A
length (app xs ys) = length xs + length ys. xs, ys:list A
Proof. IHxs : length (app xs ys) =
intros. length xs + length ys
induction xs. (1/1)
- (* base case *) S (length xs + length ys) =
simpl. s length xs + length ys
reflexivity.
- (* inductive case *)
simpl.
rewrite IHXs.
reﬂexivit}?_| “ESSE‘QES e Errors e Jl:lb‘_:r .l
Qed.
Ready, proving app_length Line: 45 Char: 14 o/0

R I

% Coglde

File Edit View Navigation Templates Queries Tools Compile Windows Help

dlec.v
No more subgoals.

Theorem app_length: forall {a} (xs ys: list &),

length (app xs ys) = length xs + length ys.

Proof.

intros.

induction xs.

- (* base case *)

simpl.

reflexivity.

- (* inductive case *)

simpl.

rewrite IHXs.

reflexivity. Messages -~ Errors
Qed.
|

Jobs

Ready, proving app_length Line: 47 Char: 1

~
204 ¢

% Coglde
File Edit View MNavigation Templates Queries

dlec.v

Theorem app_length: forall {a} (xs ys: list &),
length (app xs ys) = length xs + length ys.
Proof.
intros.
induction xs.
- (* base case *)
simpl.
reflexivity |
- (* inductive case *)
simpl.
rewrite IHXs.
reflexivity.

Qed.

Ready

Tools

Compile Windows Help

Messages

” Errors

Line:

41 Char: 15

A

Jobs

% Coglde

File Edit View MNavigation Templates Queries

dlec.v

Theorem app_assoc: forall {A} (xs ys zs: list &),
app xs (app ys zs) = app (app xs ys) zs.
Proof.

intros.

induction xs.

- (* base case *)

simpl.

reflexivity.

- (* inductive case *)

simpl.

rewrite IHxs.

reflexivity.

Qed.

Ready, proving app_assoc

Tools Compile Windows Help
1 subgoal
(1/1)
forall (A : Type) (xs ys zs : list &),
app xs (app ys zs) = app (app xs ys) zs
Messages -~ Errors Jobs
Line: 64 Char: 1

2 IS

% Coglde
File Edit View MNavigation Templates Queries

dlec.v

Theorem app_assoc: forall {A} (xs ys zs: list &),
app xs (app ys zs) = app (app xs ys) zs.
Proof.
intros.
induction xs.
- (* base case *)
simpl.
reflexivity.
- (* inductive case *)
simpl.
rewrite IHxs.
reflexivity.

Qed.

Ready

Tools Compile Windows

Messages

” Errors

Line:

82 Char:

Help

1

A

Jobs

P

Applications of Formal Methods

Attacking a web server

URLS

Input in web forms

for (i=0; p[il;

Crypto keys for SSL

etc. []

Client PC

€ > C A [www.cs.princeton.edu o =

COMPUTER SC|ENCE [this is a really long $eard

Web Server

term that overflows a buffer

[nternet Voting? Reaily? .
<by Andrew W. Appel '

independendly organized.TE

Prince onL,\ %

Professor Appel's TEDx Talk on Internet Voting

Attacking a web browser

HTML keywords

for (i=0;p[i];i++)
gif[1]=pl[i];

Images

Image names o T
o a I:I
URLS] é

a [T
etc. , Web Server
Client PC @ badguy.com

€>Cf www.badguy.com w @ =

Earn 3 Thousands
working at home!

Attacking everything in sight

%uu

The Internet
@ badguy.com

Client device

E-mail client

PDF viewer

Web browser
Operating-system kernel
TCP/IP stack

Any application that ever sees input directly from the outside
35

Solution: implement the outward-facing parts of
software without any bugs!

%uu

The Internet
@ badguy.com

Client device

E-mall client

PDF viewer

Web browser
Operating-system kernel
TCP/IP stack

Any application that ever sees input directly from the outside
34

In recent years, great progressin...

Proved-correct optimizing C compiler
Proved-correct ML compiler
Proved-correct O.S. kernels
Proved-correct crypto

Proved-correct distributed systems
Proved-correct web server

Proved-correct malloc/free library

Automated verification in industry

Amazon

Microsoft

Intel

Facebook

Google

Galois, HRL, Rockwell, Bedrock, ...

Recent Princeton JIW / Sr. Thesis

Katherine Ye '16 verified crypto security
Naphat Sanguansin "16 verified crypto impl'n
Brian McSwiggen '18 verified B-trees

Katja Vassilev '19 verified dead-var elimination

John Li 19 verified uncurrying

Jake Waksbaum 20 verified Burrows-Wheeler

Anvay Grover ‘20 verified CPS-conversion

ACM Conference on Computer and Communications Security 2017

Verified Correctness and Security of mbedTLS HMAC-DRBG

Katherine Q. Ye '16 Matthew Green Naphat Sanguansin’1 6
Princeton U., Carnegie Mellon U. Johns Hopkins University Princeton University
Lennart Beringer Adam Petcher Andrew W. Appel 81
Princeton University Oracle Princeton University
ABSTRACT

We have formalized the functional specification of HMAC-DRBG
(NIST 800-90A), and we have proved its cryptographic security—
that its output is pseudorandom—using a hybrid game-based proof.
We have also proved that the mbedTLS implementation (C program)
correctly implements this functional specification. That proof com-
poses with an existing C compiler correctness proof to guarantee,
end-to-end, that the machine language program gives strong pseu-
dorandomness. All proofs (hybrid games, C program verification,
compiler, and their composition) are machine-checked in the Coq
proof assistant. Our proofs are modular: the hybrid game proof
holds on any implementation of HMAC-DRBG that satisfies our
functional specification. Therefore, our functional specification can
serve as a high-assurance reference.

Prerequisites for

1.

COS 326

Functional Programming

Enjoy the proofs in
COS 326

Get the form signed
by Colleen Kenny-McGinley,

room 210 (one-stop
shopping, all three
signatures):

Permission for Undergraduates to Enroll in Graduate Courses

Undergraduates may request to enroll in graduate courses that are well suited to their programs of study.
This opportunity is normally reserved for juniors and seniors whose academic achievement makes
graduate-level work appropriate. In exceptional circumstances, sophomares and freshmen may have
compelling reasons to take a graduate course. An AB student wishing to enroll in a graduate course must
obtain three approvals: from the instructor in charge of the course; the student’s residential college
dean; and the student’s departmental representative (juniors and seniors) or the departmental
representative for the department offering the course (freshmen and sophomores). A BSE student also
needs three approvals: from the instructor in charge of the course; the student’s departmental
representative or academic adviser; and the associate dean of the School of Engineering and Applied
Science (SEAS).

Please note that the following regulations apply:

» The course will normally not substitute for an existing undergraduate course on the same topic.

+ When a graduate course is designated pass/D/fail only, students may not take the course for a
letter grade. Students should consult their departmental representative prior to taking the class,
if they are seeking to count the pass/D/fail graduate course as a departmental.

» When the pass/D/fail grading option is available, the residential college dean (AB students) or
assaciate dean of SEAS (BSE students) must give explicit permission below to take the graduate
course on a pass/Dffail basis. Students may not elect the pass/D/fail grading option for
departmental courses.

« Undergraduates must submit written, graded work for a graduate course.

s All written work for the course must be completed by dean’s date unless prior permission for an
extension is granted by the residential college dean.

e Graduate courses do not satisfy undergraduate distribution requirements.

Undergraduates may not enroll in a graduate course on TigerHub. After obtaining all of the necessary
signatures, undergraduates should bring this form to the Office of the Registrar.

Name: PUID # Class Year Dept
(Please Print)
TERM: AY Fall Spring SUBJ/Catalog # 5 digit class

(Ex. CEE 532 41339

Title of graduate course:

Reasons for taking the course:

*Be sure to obtain signatures from the instructor and departmental representative BEFORE
taking the form to your residential college dean.*

°) = TUCtor.
Name: Signature: Date: \

(Please Print)

Permission granted by the student’s departmental representative (AB juniors and seniors); or by the
representative of the department in which the course is offered (AB freshmen and sophomores) or by
departmental representative OR adviser (BSE students).

Name: Signature: Date:
(Please Print)

Approval granted by residential college dean (AB students) or associate dean of SEAS (BSE students).

Name. Signature: Date:
Qlease Print))

C O S 5 1 O if you're an undergrad

