
Programming with
Parallel Sequences

slides copyright 2013-2015 David Walker and Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes

COS 326
Speaker: Andrew Appel

Princeton University

1

Last Time: Parallel Sequences, Parallel Collections
The parallel sequence abstraction is powerful:
• tabulate
• nth
• length
• map
• split
• scan

– used to implement prefix-sum
– clever 2-phase implementation
– used to implement filters

• sorting

2

ASSIGNMENT #7:
PROGRAMMING WITH
PARALLEL SEQUENCES

3

Do the reading . . .
Chapter 2, “Search Engine Indexing”

(On reserve for this course, available
at blackboard.princeton.edu,
select this course, then “reserves”)

(Read also Chapter 3, “Page Rank”
so you can appreciate what you were
doing in Assignment 5 . . .)

4

US Census Queries

End goal: develop a system for efficiently computing US population queries
by geographic region

5

map-reduce API for Assignment 7
tabulate (f: int->α) (n: int) : α seq Create seq of length n, element i holds f(i) n 1
seq_of_array: α array -> α seq Create a sequence from an array 1 1

array_of_seq: α seq -> α array Create an array from a sequence 1 1

iter (f: α -> unit): α seq -> unit Applying f on each element in order. n n
length: α seq -> int Return the length of the sequence 1 1

empty: unit -> α seq Return the empty sequence 1 1

cons: α -> α seq -> α seq cons a new element on the beginning n 1
singleton: α -> α seq Return the sequence with a single element 1 1

append: α seq -> α seq -> α seq (nondestructively) concatenate two sequences m+n 1
nth: α seq -> int -> α Get the nth value in the sequence. Indexing is zero-based. 1 1

map (f: α -> β) -> α seq -> β seq Map the function f over a sequence n 1
reduce (f: α -> α -> α) (base: α):

α seq -> α
Fold a function f over the sequence.
f must be associative, and base must be the unit for f. n log n

mapreduce: (α->β)->(β->β->β)->
β -> α seq -> β Combine the map and reduce functions. n log n

flatten: α seq seq -> α seq flatten [[a0;a1]; [a2;a3]] = [a0;a1;a2;a3] n log n
repeat (x: α) (n: int) : α seq repeat x 4 = [x;x;x;x] n 1
zip: (α seq * β seq) -> (α * β) seq zip [a0;a1] [b0;b1;b2] = [(a0,b0);(a1,b1)] n 1
split: α seq -> int -> α seq * α seq split [a0;a1;a2;a3] 1= ([a0],[a1;a2;a3]) n 1
scan: (α->α->α) -> α ->

α seq -> α seq
scan f b [a0;a1;a2;…] =

[f b a0; f (f b a0) a1; f (f (f b a0) a1) a2; ...] n log n

Work Span

6

NESL
These parallel-sequence operators are inspired by the NESL
language (and system) developed by Guy Blelloch.
http://www.cs.cmu.edu/~scandal/nesl.html

7

NESL is a parallel language developed at Carnegie Mellon. It integrates ideas from the
theory community (parallel algorithms), the languages community (functional languages)
and the systems community (many of the implementation techniques). The most important
new ideas behind NESL are
1. Nested data parallelism: this feature offers the benefits of data parallelism, concise

code that is easy to understand and debug, while being well suited for irregular
algorithms, such as algorithms on trees, graphs or sparse.

2. A language-based performance model: this gives a formal way to calculate
the work and depth of a program. These measures can be related to running time on
parallel machines.

http://www.cs.cmu.edu/~scandal/nesl.html
http://www.cs.cmu.edu/
http://www.cs.cmu.edu/~scandal/cacm/node4.html
http://www.cs.cmu.edu/~scandal/cacm/node1.html

IMPLEMENTATION OF
PARALLEL SEQUENCES

8

Data Centers: Lots of Connected Computers!

2 cpu chips
48 cores

Real Machines

10

Core 1

L2 cache

Core 2

L1 cache L1 cache

ALU ALU

Core 3 Core 4

L1 cache L1 cache

ALU ALU

Chip

Real Machines

11

Core 1

L2 cache

Core 2

L1 cache L1 cache

ALU ALU

Core 3 Core 4

L1 cache L1 cache

ALU ALU

Board

RAM

Core 1

L2 cache

Core 2

L1 cache L1 cache

ALU ALU

Core 3 Core 4

L1 cache L1 cache

ALU ALU

“Disk”

Real Machines

12

Shelf

Rack
Server room

Real Machines

13

s: int seq
length(s) = 109

Real Machines

14

104

109

Real Machines

15

104

109
105 elements
per processor

tabulate (f: int->α) (n: int) : α seq Create seq of length n, element i holds f(i) n 1
length: α seq -> int Return the length of the sequence 1 1

empty: unit -> α seq Return the empty sequence 1 1

append: α seq -> α seq -> α seq (nondestructively) concatenate two sequences m+n 1
nth: α seq -> int -> α Get the nth value in the sequence. Indexing is zero-based. 1 1

map (f: α -> β) -> α seq -> β seq Map the function f over a sequence n 1
reduce (f: α -> α -> α) (base: α):

α seq -> α
Fold a function f over the sequence.
f must be associative, and base must be the unit for f. n log n

flatten: α seq seq -> α seq flatten [[a0;a1]; [a2;a3]] = [a0;a1;a2;a3] n log n
repeat (x: α) (n: int) : α seq repeat x 4 = [x;x;x;x] n 1
zip: (α seq * β seq) -> (α * β) seq zip [a0;a1] [b0;b1;b2] = [(a0,b0);(a1,b1)] n 1
split: α seq -> int -> α seq * α seq split [a0;a1;a2;a3] 1= ([a0],[a1;a2;a3]) n 1
scan: (α->α->α) -> α ->

α seq -> α seq
scan f b [a0;a1;a2;…] =

[f b a0; f (f b a0) a1; f (f (f b a0) a1) a2; ...] n log n

Real Machines

16

Work Span

105 elements
per processor

API for Assignment 7
module type S = sig

type 'a t
val tabulate : (int -> 'a) -> int -> 'a t
val seq_of_array : 'a array -> 'a t
val array_of_seq : 'a t -> 'a array
val iter: ('a -> unit) -> 'a t -> unit
val length : 'a t -> int
val empty : unit ->'a t
val cons : 'a -> 'a t -> 'a t
val singleton : 'a -> 'a t
val append : 'a t -> 'a t -> 'a t
val nth : 'a t -> int -> 'a
val map : ('a -> 'b) -> 'a t -> 'b t
val map_reduce : ('a -> 'b) -> ('b -> 'b -> 'b) -> 'b -> 'a t -> 'b
val reduce : ('a -> 'a -> 'a) -> 'a -> 'a t -> 'a
val flatten : 'a t t -> 'a t
val repeat : 'a -> int -> 'a t
val zip : ('a t * 'b t) -> ('a * 'b) t
val split : 'a t -> int -> 'a t * 'a t
val scan: ('a -> 'a -> 'a) -> 'a -> 'a t -> 'a t

end

module ArraySeq : S = struct
type 'a t = 'a array
let length = Array.length
let empty () = Array.init 0 (fun _ -> raise (Invalid_argument ""))
let singleton x = Array.make 1 x
let append = Array.append
let cons (x:'a) (s:'a t) = append (singleton x) s
let tabulate f n = Array.init n f
let nth = Array.get
let map = Array.map
. . .

end
17

Work/Span estimation
module type S = sig

type 'a t
val tabulate : (int -> 'a) -> int -> 'a t
val seq_of_array : 'a array -> 'a t
val array_of_seq : 'a t -> 'a array
val iter: ('a -> unit) -> 'a t -> unit
val length : 'a t -> int
val empty : unit ->'a t
val cons : 'a -> 'a t -> 'a t
val singleton : 'a -> 'a t
val append : 'a t -> 'a t -> 'a t
val nth : 'a t -> int -> 'a
val map : ('a -> 'b) -> 'a t -> 'b t
val map_reduce : ('a -> 'b) -> ('b -> 'b -> 'b) -> 'b -> 'a t -> 'b
val reduce : ('a -> 'a -> 'a) -> 'a -> 'a t -> 'a
val flatten : 'a t t -> 'a t
val repeat : 'a -> int -> 'a t
val zip : ('a t * 'b t) -> ('a * 'b) t
val split : 'a t -> int -> 'a t * 'a t
val scan: ('a -> 'a -> 'a) -> 'a -> 'a t -> 'a t

end

module Accounting (M: S) : SCount =
struct

let work = ref 0
let span = ref 0
let reporting name f x = …
module SM = struct

type 'a t = 'a M.t
let tabulate f n = (cost n 1;

let s = !span in
let smax = ref s in
let z = M.tabulate (fun x -> let y = f x in

smax := max (!smax) (!span);
span := s; y) n

in span := !smax; z)
let length a = (cost 1 1; M.length a)
let append a b = (cost (M.length a + M.length b) 1;

M.append a b)
. . .

end
end 18

How to use it

Open Sequence
module A = Accounting(ArraySeq)
module M = A.SM

let s1 = M.seq_of_array [|1;2;3;4;5|]
let f (s: int M.seq) = M.map (fun i -> i+1) s
let s2 = A.reporting “test1” f s1
let r = Array.to_list (M.array_of_seq s2)

(* Prints: *)

test1 work=5 span=1

r : int list = [2;3;4;5;6]

19

let s1 = M.seq_of_array [|1;2;3;4;5|]
let f (s: int M.seq) = M.map (fun i -> i+1) s
let s2 = A.reporting “test1” f s1
let r = Array.to_list (M.array_of_seq s2)

(* Prints: nothing *)

r : int list = [2;3;4;5;6]

Discussion
How to use these operators to make an inverted index?

key: URL value: contents of web page (HTML)
sequence of words

key: word value: sequence of (URL,position-in-seq) pairs

21

Discussion
How to use these operators to make an inverted index?

key: URL value: word seq

key: word value: (URL*int) seq

22

Discussion
How to use these operators to make an inverted index?

key: URL value: word seq
(URL * (word seq)) seq

key: word value: (URL*int) seq

23

Discussion
How to use these operators to make an inverted index?

Input web pages: (URL* (word seq)) seq

key: word value: (URL *int) seq

24

finite map: word→((URL*int)seq)

Implement by balanced binary search tree (such as 2-3 tree)
from OCaml’s Map library

Now, let’s focus on a single web page,
one element of this sequence of web pages

Discussion
How to use these operators to make an inverted index?

Input web pages: (URL* (word seq)) seq

word ((URL*int)seq) Map.t

25

Discussion

(URL* (word seq))

word ((URL*int)seq) Map.t

26

(foo.com, [the;play;is;the;thing])

is ⟼	[(foo.com,2)]
play ⟼	[(foo.com,1)]
the ⟼	[(foo.com,0); (foo.com,3)]
thing⟼	[(foo.com,4)]

0 1 2 3 4

Discussion

27

(foo.com, [the;play;is;the;thing])

is ⟼	[(foo.com,2)]
play ⟼	[(foo.com,1)]
the ⟼	[(foo.com,0); (foo.com,3)]
thing⟼	[(foo.com,4)]

(bar.com, [play;the;thing])

play ⟼	[(bar.com,0)]
the ⟼	[(bar.com,1)]
thing⟼	[(bar.com,2)]

Discussion

28

(foo.com, [the;play;is;the;thing])

is ⟼	[(foo.com,2)]
play ⟼	[(foo.com,1)]
the ⟼	[(foo.com,0); (foo.com,3)]
thing⟼	[(foo.com,4)]

(bar.com, [play;the;thing])

play ⟼	[(bar.com,0)]
the ⟼	[(bar.com,1)]
thing⟼	[(bar.com,2)]

is ⟼	[(foo.com,2)]
play ⟼	[[(bar.com,0); (foo.com,1)]
the ⟼	[(bar.com,1); (foo.com,0); (foo.com,3)]
thing⟼	[[(bar.com,2); (foo.com,4)]

Discussion
How to use these operators to make an inverted index?

Input web pages: (URL* (word seq)) seq

word ((URL*int)seq) Map.t

29

Reduce!

Discussion
How to use these operators to make an inverted index?

Input web pages: (URL* (word seq)) seq

word ((URL*int)seq) Map.t

30

Reduce!

This has been a brief introduction to give you a flavor of what you
have to do. More details in the homework . . . but not necessarily a
lot more – you’ll have to think for yourself.

And: There is not “one true solution” to this homework.

Don’t “hide” work and span!

Open Sequence
module A = Accounting(ArraySeq)
module M = A.SM

let rec costly (n: int) = if n=0 then 1 else costly (n-1) + costly (n-1)

let s1 = M.seq_of_array [|51;52;53;54;55|]
let f (s: int M.seq) = M.map costly s
let s2 = A.reporting “test2” f s1
let r = Array.to_list (M.array_of_seq s2)

(* Prints: *)

test2 work=5 span=1

r : int list = [2;3;4;5;6]

31

Ideally, each function
you write in OCaml
should do a small

amount of computation
(other than nested calls

to the M operators).

CONCLUSION

32

Summary
By using the Parallel Sequence operators to combine pure-
functional implementations of primitive functions, you can:
• Write highly parallel programs
• that scale to many processors
• with fault-tolerance built in
• that compute the same answer deterministically no matter

how the parallel execution goes
• while still thinking at a high level of abstraction, independent

of the gory details of your parallel machine.

33

