
Parallel Prefix Scan

Credits:
Dan Grossman, UW

http://homes.cs.washington.edu/~djg/teachingMaterials/spac
Blelloch, Harper, Licata (CMU, Wesleyan)

COS 326
Speaker: Andrew Appel

Princeton University

slides copyright 2018-20 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

The prefix-sum problem

prefix_sum : int seq -> int seq

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

The simple sequential algorithm: accumulate the sum from left to right

– Sequential algorithm: Work: O(n), Span: O(n)
– Goal: a parallel algorithm with Work: O(n), Span: O(log n)

Parallel prefix-sum

The trick: Use two passes
– Each pass has O(n) work and O(log n) span
– So in total there is O(n) work and O(log n) span

First pass builds a tree of sums bottom-up
– the “up” pass

Second pass traverses the tree top-down to compute prefixes
– the “down” pass computes the "from-left-of-me" sum

Historical note:
– Original algorithm due to R. Ladner and M. Fischer, 1977

3

Example

input

output

6 4 16 10 16 14 2 8

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7,8
s
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7,8
s
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76
0

0

0

0

36

10 36 666 26 52 68

10 66

36

Example

The algorithm, pass 1
1. Up: Build a binary tree where
– Root has sum of the range [x,y)
– If a node has sum of [lo,hi) and hi>lo,

• Left child has sum of [lo,middle)
• Right child has sum of [middle,hi)
• A leaf has sum of [i,i+1), i.e., nth input i

This is an easy parallel divide-and-conquer algorithm: “combine”
results by actually building a binary tree with all the range-sums
– Tree built bottom-up in parallel

Analysis: O(n) work, O(log n) span

The algorithm, pass 2
2. Down: Pass down a value fromLeft
– Root given a fromLeft of 0
– Node takes its fromLeft value and

• Passes its left child the same fromLeft
• Passes its right child its fromLeft plus its left child’s sum

– as stored in part 1
– At the leaf for sequence position i,

• nth output i == fromLeft + nth input i

This is an easy parallel divide-and-conquer algorithm:
traverse the tree built in step 1 and produce no result
– Leaves create output
– Invariant: fromLeft is sum of elements left of the node’s range

Analysis: O(n) work, O(log n) span

Sequential cut-off
For performance, we need a sequential cut-off:

• Up:
– just a sum, have leaf node hold the sum of a range

• Down:
– do a sequential scan

Parallel prefix, generalized
Just as map and reduce are the simplest examples of a common

pattern, prefix-sum illustrates a pattern that arises in many, many
problems

• Minimum, maximum of all elements to the left of i

• Is there an element to the left of i satisfying some property?

• Count of elements to the left of i satisfying some property
– This last one is perfect for an efficient parallel filter …
– Perfect for building on top of the “parallel prefix trick”

Parallel Scan

pre_scan (o) base <x1, ..., xn>
==

<base, base o x1, ..., base o x1 o ... o xn-1>

scan (o) <x1, ..., xn>
==

<x1, x1 o x2, ..., x1 o ... o xn>

sequence with o applied to all items
to the left of index in input

like a fold, except return
the folded prefix at each step

Operator o
must be associative!

base must be a unit
for operator o

Parallel Filter

Given a sequence input, produce a sequence output containing only
elements v such that (f v) is true

Example: let f x = x > 10

filter f <17, 4, 6, 8, 11, 5, 13, 19, 0, 24>
== <17, 11, 13, 19, 24>

Parallelizable?
– Finding elements for the output is easy
– But getting them in the right place seems hard

Parallel prefix to the rescue

Use parallel map to compute a bit-vector for true elements:

input <17, 4, 6, 8, 11, 5, 13, 19, 0, 24>
bits <1, 0, 0, 0, 1, 0, 1, 1, 0, 1>

Use parallel-prefix sum on the bit-vector:

bitsum <1, 1, 1, 1, 2, 2, 3, 4, 4, 5>

For each i, if bits[i] == 1 then write input[i] to output[bitsum[i]] to produce
the final result:

output <17, 11, 13, 19, 24>

QUICKSORT

Quicksort review

Recall quicksort was sequential, in-place, expected time O(n log n)

Best / expected case work
1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

How should we parallelize this?

Quicksort

Best / expected case work
1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

Easy: Do the two recursive calls in parallel
• Work: unchanged. Total: O(n log n)
• Span: now T(n) = O(n) + 1T(n/2) = O(n)

Doing better

As with mergesort, we get a O(log n) speed-up with an infinite
number of processors. That is a bit underwhelming

– Sort 109 elements 30 times faster

(Some) Google searches suggest quicksort cannot do better
because the partition cannot be parallelized*

– The Internet has been known to be wrong J
– But we need auxiliary storage (no longer in place)
– In practice, constant factors may make it not worth it

Already have everything we need to parallelize the partition…

*These days, most hits get this right, and discuss parallel partition

Parallel partition (not in place)

This is just two filters!
– We know a parallel filter is O(n) work, O(log n) span
– Parallel filter elements less than pivot into left side of aux array
– Parallel filter elements greater than pivot into right size of aux array
– Put pivot between them and recursively sort

With O(log n) span for partition, the total best-case and expected-
case span for quicksort is

T(n) = O(log n) + 1T(n/2) = O(log2 n)

Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

Example

Step 1: pick pivot as median of three

8 1 4 9 0 3 5 2 7 6

Steps 2a and 2c (combinable): filter less than, then filter
greater than into a second array

1 4 0 3 5 2

1 4 0 3 5 2 6 8 9 7

Step 3: Two recursive sorts in parallel
– Can copy back into original array (like in mergesort)

More Algorithms
• To add multiprecision numbers.
• To evaluate polynomials
• To solve recurrences.
• To implement radix sort
• To delete marked elements from an array
• To dynamically allocate processors
• To perform lexical analysis. For example, to parse a program

into tokens.
• To search for regular expressions. For example, to implement

the UNIX grep program.
• To implement some tree operations. For example, to find the

depth of every vertex in a tree
• To label components in two dimensional images.

See Guy Blelloch “Prefix Sums and Their Applications”

Summary
• Parallel prefix sums and scans have many applications

– A good algorithm to have in your toolkit!

• Key idea: An algorithm in 2 passes:
– Pass 1: build a "reduce tree" from the bottom up
– Pass 2: compute the prefix top-down, looking at the left-

subchild to help you compute the prefix for the right subchild

PARALLEL COLLECTIONS IN THE
"REAL WORLD"

Big Data
If Google wants to index all the web pages (or images or gmails
or google docs or ...) in the world, they have a lot of work to do
• Same with Facebook for all the facebook pages/entries
• Same with Twitter
• Same with Amazon
• Same with ...

Internet has approximately 100 trillion web pages (1014)

Suppose: server farm with 100 million pages handled per server (108)

Need: 1 million servers (106)

Suppose: average server computer has mean-time-to-failure of 3 years (103 days)

Fault tolerance

Internet has approximately 100 trillion web pages (1014)

Suppose: server farm; 100 million pages handled per server (108)

Need: 1 million servers (106)

Parallel web-indexing algorithm will take a few hours; run it every day.

Suppose: average server computer has mean-time-to-failure of 3 years (103 days)
*This was true in 2005 with rotating disks; MTTF probably longer now with SSD

Then: Mean time to first server fail = 10-3 days = 1 minute

Impossible to index the web?

The solution
Build a framework (language, system) for
large-scale, many-server, fault-tolerant, big-data
parallel programming.

It must be general-purpose (because there are many tasks to do
besides web indexing: search, maps, advertising auctions, etc.)

Idea:
Many of these tasks come down to map, filter, fold, reduce, scan

Google Map-Reduce

Google MapReduce (2004): a fault tolerant,
massively parallel functional programming
paradigm

– based on our friends "map" and "reduce"
– Hadoop is the open-source variant
– Database people complain that they have

been doing it for a while
• ... but it was hard to define

Fun stats circa 2012:
– Big clusters were ~4000 nodes
– Facebook had 100 PB in Hadoop
– TritonSort (UCSD) sorts 900GB/minute on

a 52-node, 800-disk hadoop cluster

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay@google.com

Google, Inc.

Abstract
MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.
Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.
Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-
abytes of data on thousands of machines. Programmers
find the system easy to use: hundreds ofMapReduce pro-
grams have been implemented and upwards of one thou-
sand MapReduce jobs are executed on Google’s clusters
every day.

1 Introduction

Over the past five years, the authors and many others at
Google have implemented hundreds of special-purpose
computations that process large amounts of raw data,
such as crawled documents, web request logs, etc., to
compute various kinds of derived data, such as inverted
indices, various representations of the graph structure
of web documents, summaries of the number of pages
crawled per host, the set of most frequent queries in a

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.
As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-
specified map and reduce operations allows us to paral-
lelize large computations easily and to use re-execution
as the primary mechanism for fault tolerance.
The major contributions of this work are a simple and
powerful interface that enables automatic parallelization
and distribution of large-scale computations, combined
with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.
Section 2 describes the basic programming model and
gives several examples. Section 3 describes an imple-
mentation of the MapReduce interface tailored towards
our cluster-based computing environment. Section 4 de-
scribes several refinements of the programming model
that we have found useful. Section 5 has performance
measurements of our implementation for a variety of
tasks. Section 6 explores the use of MapReduce within
Google including our experiences in using it as the basis

To appear in OSDI 2004 1

Data Model & Operations
• Map-reduce operates over collections of key-value pairs

– millions of files (eg: web pages) drawn from the file system
• The map-reduce engine is parameterized by 3 functions:

map : key1 * value1 -> (key2 * value2) list

combine : key2 * (value2 list) -> value2 option

reduce : key2 * (value2 list) -> key3 * (value3 list)

optional

Sort-of Functional Programming in Java
Hadoop interfaces:

interface Reducer<K2,V2,K3,V3> {
public void reduce (K2 key,

Iterator<V2> values,
OutputCollector<K3,V3> output)

...
}

interface Mapper<K1,V1,K2,V2> {
public void map (K1 key,

V1 value,
OutputCollector<K2,V2> output)

...
}

Word Count in Java

class WordCountReduce {
public void reduce(String key,

Iterator<Integer> values,
OutputCollector<String,Integer> output)

{
int count = 0;
for (int v : values)
count += 1;

output.collect(key, count)
}

class WordCountMap implements Map {
public void map(DocID key

List<String> values,
OutputCollector<String,Integer> output)

{
for (String s : values)
output.collect(s,1);

}
}

Architecture

Distributed Implementation
In

pu
t D

at
a

O
ut

pu
t D

at
a

Map Shuffle/Sort Reduce

Local
Storage

Local
Storage

Local
Storage

Combine

Iterative Jobs are Common
Iterative Jobs are common…

In
pu

t D
at

a

O
ut

pu
t D

at
a

In
pu

t D
at

a

O
ut

pu
t D

at
a

W
or

ki
ng

 S
et

Jobs, Tasks and Attempts
• A single job is split into many tasks
• Each task may include many calls to map and reduce
• Workers are long-running processes that are assigned many

tasks
• Multiple workers may attempt the same task

– each invocation of the same task is called an attempt
– the first worker to finish "wins"

• Why have multiple machines attempt the same task?
– machines will fail

• approximately speaking: 5% of high-end disks fail/year
• if you have 1000 machines: 1 failure per week
• repeated failures become the common case

– machines can partially fail or be slow for some reason
• reducers can't start until all mappers complete

32

Flow of Information
The flow of information

Heartbeats

Job config.

Tasks to start OK

Completed

33

A Modern Software StackA modern software stack

Cluster
Node

Cluster
Node

Cluster
Node

Cluster
Node

Distributed Filesystem

Distributed Execution Engine

Key-value
store

High-level scripting language

Workload Manager

8

For more: See COS 418, distributed systems

Summary
Folds and reduces are easily coded as parallel divide-and-
conquer algorithms with O(n) work and O(log n) span

Scans are trickier and use a 2-pass algorithm that builds a tree.

The map-reduce-fold paradigm, inspired by functional
programming, is a big winner when it comes to big data
processing.

Hadoop is an industry standard but higher-level data processing
languages have been built on top.

Summary
Folds and reduces are easily coded as parallel divide-and-
conquer algorithms with O(n) work and O(log n) span

Scans are trickier and use a 2-pass algorithm that builds a tree.

The map-reduce-fold paradigm, inspired by functional
programming, is a big winner when it comes to big data
processing.

Hadoop is an industry standard but higher-level data processing
languages have been built on top.

Even though the local programming may be “imperative” (in C++,
Java, etc.), it must be “as if functional” (no side effects).

