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Parallelism:  

Doing many things at the same time
instead of one after the other. 



UNDERSTANDING TECHNOLOGY 
TRENDS



Moore's Law
Moore's Law:  The number of transistors you can put on a 
computer chip doubles (approximately) every couple of years.

Consequence for most of the history of computing:  All programs 
double in speed every couple of years.

– Why?  Hardware designers are wicked smart.
– They have been able to use those extra transistors to (for 

example) double the number of instructions executed per time 
unit, thereby processing speed of programs

Consequence for application writers:
– watch TV for a while and your programs optimize themselves!
– new applications thought impossible became possible because 

of increased computational power
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Darn!  Intel engineers no 
longer optimize my
programs while I watch TV!

Power to chip
peaking



Parallelism
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Why is it particularly important (today)?
– Roughly every other year, a chip from Intel would:

• halve the feature size (size of transistors, wires, etc.)
• double the number of transistors
• [until 2003] double the clock speed
• this drove the economic engine of the IT industry (and the US!)

– No longer able to double clock or cut voltage:  a processor won’t 
get any faster!
• (so why should you buy a new laptop, desktop, etc.?)
• power and heat are limitations on the clock
• errors, variability (noise) are limitations on the voltage
• but we can still pack a lot of transistors on a chip… (at least for 

another 10 to 15 years.)



So…
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Instead of trying to make your CPU go faster, Intel (and AMD, ARM, 
etc.) have been to packing more CPUs onto a chip.

– a few years ago: dual core (2 CPUs).
– a little more recently: 4, 6, 8 cores.
– Intel is testing 48-core chips with researchers now.
– Within 10 years, you’ll have ~1024 Intel CPUs on a chip.

In fact, that’s already happening with graphics chips (eg, Nvidia).
– really good at simple data parallelism (many deep pipes)
– but they are much dumber than an Intel core.
– and right now, chew up a lot of power.
– watch for GPUs to get “smarter” and more power efficient, while 

CPUs become more like GPUs.



But there’s more:  Data Centers



Data Centers:  Lots of Connected Computers!

2 cpu chips
48 cores



Data Centers:  Lots of Connected Computers
Computer containers for plug-and-play parallelism:

80,000 servers ?
x  20 cores/server ?
= 1.6 million cores?

How many servers? 
Trade secret!

How does Microsoft 
estimate how many 
servers Google has?



Data Centers
10s or 100s of thousands of computers
All connected together
Motivated by new applications and scalable web services:

– let's catalogue all N billion webpages in the world
– let's allow anyone in the world to search for the page they need
– let's process that search in less than a second

It's Amazing!
It's Magic!



Sounds Great!

13

So my old programs will run 2x, 4x, 48x, 256x, 1024x faster?

No way!



Sounds Great!
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So my old programs will run 2x, 4x, 48x, 256x, 1024x faster?

No way!

Single core ==> multicore means new algorithms
– without work & thought, our programs don't get any faster at all
– it takes ingenuity to generate efficient parallel algorithms from 

sequential ones



Unfortunately
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Most parallel and concurrent programming models are far 
harder to work with than sequential ones:

• They introduce nondeterminism
– the root of (almost all) evil
– program parts suddenly have many different outcomes

• they have different outcomes on different runs
• debugging requires considering all of the possible outcomes
• horrible heisenbugs hard to track down

• They are nonmodular
– module A implicitly influences the outcomes of module B

• They introduce new classes of errors
– race conditions, deadlocks

• They introduce new performance/scalability problems
– busy-waiting, sequentialization, contention,



Fortunately
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You are taking a class on functional programming ...



Fortunately

17

You are taking a class on functional programming ...

With a well designed parallel functional programming 
language (or library),

• Correctness is pretty easy to reason about because the 
parallel program has the same (purely functional) semantics 
as the sequential program

• Programs are deterministic
• Programs don’t have race conditions
• But can still be tricky to reason about the cost of parallel 

functional programs



Frameworks for Parallel Functional Programming

Dryad

Pig

Naiad



INTRODUCING PARALLELISM



Flavors of Parallelism
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Data Parallelism
– same computation being performed on a collection of 

independent items
– e.g., adding two vectors of numbers

Task Parallelism
– different computations/programs running at the same time
– e.g., running web server and database

Pipeline Parallelism
– assembly line:

sequential
f

sequential
g

map f over all items map g over all items



Parallelism vs. Concurrency
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Parallelism:  performs many tasks simultaneously
• purpose:  improves throughput
• mechanism:  

– many independent computing devices
– decrease run time of program by utilizing multiple cores or computers

• eg: running your web crawler on a cluster versus one machine.

Concurrency: mediates multiparty access to shared resources
• purpose: decrease response time
• mechanism:

– switch between different threads of control
– work on one thread when it can make useful progress; when it can't, 

suspend it and work on another thread
• eg:  running your clock, editor, chat at the same time on a single CPU.

– OS gives each of these programs a small time-slice (~10msec)
– often slows throughput due to cost of switching contexts

• eg:  don't block while waiting for I/O device to respond, but let another thread 
do useful CPU computation



THREADS:
A CONVENTIONAL PARALLEL 
PROGRAMMING MODEL



Threads: A Warning
Concurrent Threads with Locks:  the classic shoot-yourself-in-the-
foot concurrent programming model

– all the classic error modes

Why Threads?
– almost all programming languages will have a threads library

• OCaml in particular!
– you need to know where the pitfalls are
– the assembly language of concurrent programming paradigms

• we’ll use threads to build several higher-level programming 
models



Threads
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A thread is an abstraction of a processor.
– programmer (or compiler) decides that some work can be done 

in parallel with some other work, e.g.:

– we fork a thread to run the computation in parallel, e.g.:

let _ = compute_big_thing() in
let y = compute_other_big_thing() in
...

let t = Thread.create compute_big_thing () in
let y = compute_other_big_thing () in
...



Intuition in Pictures
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let t = Thread.create f () in
let y = g () in
...

Thread.create

execute g ()

...

processor 1

(* doing nothing *)

execute f ()

...

processor 2

time 1

time 2

time 3



Of Course…

26

Suppose you have 2 available cores and you fork 4 threads.  In a 
typical multi-threaded system, 

– the operating system provides the illusion that there are an 
infinite number of processors.
• not really:  each thread consumes space, so if you fork too many 

threads the process will die.

– it time-multiplexes the threads across the available processors.
• about every 10 msec, it stops the current thread on a processor, 

and switches to another thread.
• so a thread is really a virtual processor.



OCaml, Concurrency and Parallelism
Unfortunately, even if your computer has 2, 4, 6, 8 cores, OCaml
cannot exploit them.  It multiplexes all threads over a single core

Hence, OCaml provides concurrency, but not parallelism. Why? 
Because OCaml (like Python) has no parallel “runtime system” or 
garbage collector.  Other functional languages (Haskell, F#, ...) do.  

Fortunately, when thinking about program correctness, it doesn’t 
matter that OCaml is not parallel -- I will often pretend that it is.  

You can hide I/O latency, do multiprocess programming or distribute 
tasks amongst multiple computers in OCaml.

core

thread …thread thread



Multicore Ocaml

A concurrent and shared-memory parallel extension of the 
OCaml compiler.

Multicore OCaml cleanly separates abstractions for 
concurrency (overlapped execution) from parallelism 
(simultaneous execution). Concurrency is expressed 
through effect handlers and parallelism through domains. 
Much of the work in supporting shared memory parallelism 
is the development of a mostly-concurrent, generational, 
mark-and-sweep collector that strikes a balance between 
single-threaded performance and feature backwards 
compatibility, and multicore scalability.

https://github.com/ocaml-multicore/ocaml-multicore

OCaml Labs

http://kcsrk.info/papers/system_effects_feb_18.pdf
https://github.com/ocaml-multicore/ocaml-multicore/blob/master/stdlib/domain.mli
https://github.com/ocaml-multicore/ocaml-multicore


Coordination
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How do we get back the result that t is computing?

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t

let t = Thread.create f () in
let y = g () in
...



First Attempt
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let r = ref None
let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

match !r with 
| Some v -> (* compute with v and y *)

| None -> failwith "impossible"

What’s wrong with this?



Second Attempt
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let r = ref None
let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

let rec wait() = 

match !r with 
| Some v -> v

| None -> wait()

in
let v = wait() in
(* compute with v and y *)



Two Problems
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First, we are busy-waiting.  
• consuming CPU without doing something useful.
• CPU could either be running a useful thread/program or power down.  

let r = ref None
let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

let rec wait() = 

match !r with 
| Some v -> v

| None -> wait()

in
let v = wait() in
(* compute with v and y *)



Two Problems
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Second, an operation like r := Some v may not be atomic.
• r := Some v  requires us to copy the bytes of Some v into the ref r
• we might see part of the bytes (corresponding to Some) before we’ve 

written in the other parts (e.g., v).
• So the waiter might see the wrong value.

let r = ref None
let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

let rec wait() = 

match !r with 
| Some v -> v

| None -> wait()

in
let v = wait() in
(* compute with v and y *)



Atomicity
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Consider the following:

let inc(r:int ref) = r := !r + 1



Atomicity
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Consider the following:

and suppose two threads are incrementing the same ref r:

Thread 1 Thread 2
r:=0

inc(r); inc(r);

!r

If r initially holds 0, then what’s the final value of r?

let inc(r:int ref) = r := !r + 1



Atomicity
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The problem is that we can’t see exactly what instructions the 
compiler might produce to execute the code.

It might look like this:

Thread 1 Thread 2
x1 := mem[r]     x2 := mem[r]
x1 := x1 + 1       x2 := x2 + 1

mem[r] := x1 mem[r] := x2



Atomicity
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Furthermore, we don’t know the order in which instructions in 
thread 1 and thread 2 are executed.

On a single processor, they may be interleaved.

Thread 1 Thread 2
x1 := mem[r]     x2 := mem[r]
x1 := x1 + 1       x2 := x2 + 1

mem[r] := x1 mem[r] := x2



Atomicity
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Furthermore, we don’t know the order in which instructions in 
thread 1 and thread 2 are executed.

With this interleaving, what’s the final value of r ?

Thread 1 Thread 2
x1 := mem[r]     x2 := mem[r]
x1 := x1 + 1       x2 := x2 + 1

mem[r] := x1 mem[r] := x2



Atomicity
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Furthermore, we don’t know the order in which instructions in 
thread 1 and thread 2 are executed.

With this interleaving, what’s the final value of r ?

Thread 1 Thread 2
x1 := mem[r]     x2 := mem[r]
x1 := x1 + 1       x2 := x2 + 1

mem[r] := x1 mem[r] := x2When you see the 
word “interleaving”, 

beware!



Real Machines
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Today’s multicore processors don’t even have sequentially 
consistent memory models.

That means that we can’t even assume that what we will see 
corresponds to some interleaving of the threads’ instructions!

Beyond the scope of this course.

Core 1

L2 cache

Core 2

L1 cache L1 cache

ALU ALU

Core 3 Core 4

L1 cache L1 cache

ALU ALU



Synchronization

The solution is to add synchronization instructions
to ensure that certain program sequences behave as if atomic.

But programming with general locks is painful and error-prone.

let inc(r:int ref) = r := !r + 1

lock(s);
inc r;
unlock(s)

thread 1 thread 2

lock(s);
inc r;
unlock(s)



Recall our Problem
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How do we get back the result that t is computing?

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t

let t = Thread.create f () in
let y = g () in
...



One Solution (using join)
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let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

Thread.join t ; 

match !r with 
| Some v -> (* compute with v and y *)

| None -> failwith “impossible”



One Solution (using join)
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let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

Thread.join t ; 

match !r with 
| Some v -> (* compute with v and y *)

| None -> failwith “impossible”

Thread.join t causes 
the current thread to wait

until the thread t
terminates.



One Solution (using join)
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let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

Thread.join t ; 

match !r with 
| Some v -> (* compute with v and y *)

| None -> failwith “impossible”

So after the join, we know 
that any of the operations 

of t have completed.

Synchronization



A special discipline for parallel computation
General synchronization 
using locks

Fork-join parallelism



Imperative parallel programming
General synchronization 
using locks

Fork-join parallelism

r:=x r:=y r:=zr:=x r:=y r:=z

Programming with mutable shared variables is possible, but difficult,
to get right!   Can we avoid having to reason about this?



FUTURES:  A PARALLEL 
PROGRAMMING ABSTRACTION



Futures
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module type FUTURE = 
sig
type ‘a future 

(* future f x forks a thread to run f(x)
and stores the result in a future when complete *)

val future : (‘a->‘b) -> ‘a -> ‘b future 

(* force f causes us to wait until the 
thread computing the future value is done
and then returns its value. *)

val force : ‘a future -> ‘a  
end



Does that interface looks familiar .... ?



Future Implementation
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module Future : FUTURE = 
struct
type ‘a future = {tid : Thread.t      ; 

value : ’a option ref }

end



Future Implementation
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module Future : FUTURE = 
struct
type ‘a future = {tid : Thread.t      ; 

value : ‘a option ref }

let future(f:‘a->‘b)(x:‘a) : ‘b future = 

let r = ref None in
let t = Thread.create (fun () -> r := Some(f x)) () 
in
{tid=t ; value=r}

end



Future Implementation
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module Future : FUTURE = 
struct
type ‘a future = {tid : Thread.t      ; 

value : ‘a option ref }

let future(f:‘a->‘b)(x:‘a) : ‘b future = 

let r = ref None in
let t = Thread.create (fun () -> r := Some(f x)) () 
in
{tid=t ; value=r}

let force (f:‘a future) : ‘a = 
Thread.join f.tid ; 
match !(f.value) with
| Some v -> v
| None -> failwith “impossible!”

end



Now using Futures
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let x = future f () in
let y = g () in
let v = force x in

(* compute with v and y *)



Back to the Futures
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let x = future f () in
let y = g () in
let v = force x in

y + v

let r = ref None

let t = Thread.create

(fun _ -> r := Some(f ())) 

()

in

let y = g() in

Thread.join t ; 

match !r with

Some v -> y + v

| None -> failwith “impossible”

with futures library: without futures library:

val f : unit -> int

val g : unit -> int

module type FUTURE = 
sig
type ‘a future 

val future : (’a->’b) -> ’a -> ‘b future 
val force :’a future -> ‘a  

end



Back to the Futures
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what happens if
we delete these
lines?

let x = future f () in
let y = g () in
let v = force x in

y + v x

let r = ref None

let t = Thread.create

(fun _ -> r := Some(f ())) 

()

in

let y = g() in

Thread.join t ; 

match !r with

Some v -> y + v

| None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE = 
sig
type ‘a future 

val future : (’a->’b) -> ’a -> ‘b future 
val force :’a future -> ‘a  

end



Back to the Futures
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let x = future f () in
let y = g () in
let v = force x in

y + x

let r = ref None

let t = Thread.create

(fun _ -> r := Some(f ())) 

()

in

let y = g() in

Thread.join t ; 

match !r with

Some v -> y + v

| None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE = 
sig
type ‘a future 

val future : (’a->’b) -> ’a -> ‘b future 
val force :’a future -> ‘a  

end

Moral: Futures + typing ensure
entire categories of errors can’t 
happen -- you protect yourself
from your own stupidity



Back to the Futures
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let x = future f () in

let v = force x in
let y = g () in
y + v

let r = ref None

let t = Thread.create

(fun _ -> r := Some(f ())) 

()

in

Thread.join t ; 

let y = g() in

match !r with

Some v -> y + v

| None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE = 
sig
type ‘a future 

val future : (’a->’b) -> ’a -> ‘b future 
val force :’a future -> ‘a  

end

what happens if you
relocate force, join?



Back to the Futures
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let x = future f () in

let v = force x in
let y = g () in
y + x

let r = ref None

let t = Thread.create

(fun _ -> r := Some(f ())) 

()

in

Thread.join t ; 

let y = g() in

match !r with

Some v -> y + v

| None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with futures library: without futures library:

module type FUTURE = 
sig
type ‘a future 

val future : (’a->’b) -> ’a -> ‘b future 
val force :’a future -> ‘a  

end

Moral: Futures are
not a universal savior



An Example:  Mergesort on Arrays
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let mergesort (cmp:'a->'a->int) 
(arr : 'a array) : 'a array = 

let rec msort (start:int) (len:int) : 'a array = 

match len with 
| 0 -> Array.of_list []

| 1 -> Array.make 1 arr.(start)
| _ -> let half = len / 2 in

let a1 = msort start half in
let a2 = msort (start + half) 

(len - half) in
merge a1 a2

and merge (a1:'a array) (a2:'a array) : 'a array =

... 



An Example:  Mergesort on Arrays
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let mergesort (cmp:'a->'a->int) 
(arr : 'a array) : 'a array = 

let rec msort (start:int) (len:int) : 'a array = 

match len with 
| 0 -> Array.of_list []

| 1 -> Array.make 1 arr.(start)
| _ -> let half = len / 2 in

let a1 = msort start half in
let a2 = msort (start + half) 

(len - half) in
merge a1 a2

and merge (a1:'a array) (a2:'a array) : 'a array =

... 

Opportunity for 
parallelization



Making Mergesort Parallel
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let mergesort (cmp:'a->'a->int) 
(arr : 'a array) : 'a array = 

let rec msort (start:int) (len:int) : 'a array = 

match len with 
| 0 -> Array.of_list []

| 1 -> Array.make 1 arr.(start)
| _ -> let half = len / 2 in

let a1_f = 

Future.future (msort start) half in
let a2 = 

msort (start + half)(len - half) in
merge (Future.force a1_f) a2

and merge (a1:'a array) (a2:'a array) : 'a array = 



Divide-and-Conquer

64

This is an instance of a basic divide-and-conquer pattern in 
parallel programming

– take the problem to be solved and divide it in half
– fork a thread to solve the first half
– simultaneously solve the second half
– synchronize with the thread we forked to get its results
– combine the two solution halves into a solution for the whole 

problem.

Warning:  the fact that we only had to rewrite 2 lines of code for 
mergesort made the parallelization transformation look 
deceptively easy

– we also had to verify that any two threads did not touch 
overlapping portions of the array -- if they did we would have to 
again worry about scheduling nondeterminism



Caveats
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There is some overhead for creating a thread.
– On uniprocessor, parallel code slower than sequential code.

Even on a multiprocessor, we do not always want to fork.
– when the subarray is small, faster to sort it sequentially than to fork

• similar to using insertion sort when arrays are small vs. quicksort
– this is known as a granularity problem

• more parallelism than we can effectively take advantage of.



Caveats
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Optimizing requires benchmarking and experience

Typically, use parallel divide-and-conquer until:
– we have generated at least as many threads as there are processors

• often more threads than processors because different jobs take 
different amounts of time to complete and we would like to keep all 
processors  busy

– the sub-arrays have gotten small enough that it’s not worth forking.

We’re not going to worry about these performance-tuning details but 
rather focus on the distinctions between parallel and sequential
algorithms.



Another Example
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type 'a tree = Leaf | Node of 'a node
and 'a node = {left  : 'a tree ; 

value : 'a      ;

right : 'a tree }

let rec fold (f:'a -> 'b -> 'b -> 'b) (u:'b) 
(t:'a tree) : 'b = 

match t with 
| Leaf -> u

| Node n -> 

f n.value (fold f u n.left) (fold f u n.right)

let sum (t:int tree) = fold (+) 0 t



Another Example
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type 'a tree = Leaf | Node of 'a node
and 'a node = {left  : 'a tree ;

value : 'a      ; 

right : 'a tree }

let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b) 
(t:'a tree) : 'b = 

match t with 
| Leaf -> u

| Node n -> 
let l_f = Future.future (pfold f u) n.left in
let r = pfold f u n.right in
f n.value (Future.force l_f) r

let sum (t:int tree) = pfold (+) 0 t



Note

69

If the tree is unbalanced, then we’re not going to get the same 
speedup as if it’s balanced.

Consider the degenerate case of a list.
– The forked child will terminate without doing any useful work.
– So the parent is going to have to do all that work.
– Pure overhead…  L

In general, lists are a horrible data structure for parallelism.
– we can’t cut the list in half in constant time
– for arrays and trees, we can do that (assuming the tree is 

balanced.)



Side Effects?
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type 'a tree = Leaf | Node of 'a node
and 'a node = { left  : 'a tree ; 

value : 'a      ; 
right : 'a tree }

let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b) 
(t:'a tree) : 'b = 

match t with 
| Leaf -> u
| Node n -> 

let l_f = Future.future (pfold f u) n.left in
let r = pfold f u n.right in
f n.value (Future.force l_f) r

let print (t:int tree) = 
pfold (fun n _ _ -> Printf.print “%d\n” n) ()



Huge Point
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If code is purely functional, then it never matters in what order it is run.
If f () and g () are pure then all of the following are equivalent:

As soon as we introduce side-effects, the order starts to matter.  
– This is why, IMHO, imperative languages where even the simplest of 

program phrases involves a side effect, are doomed.
– Of course, we’ve been saying this for 40 years!
– See J. Backus’s Turing Award lecture, “Can Programming be Liberated from 

the von Neumann Style?  A Functional Style and Its Algebra of Programs.”
http://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf

let x = f() in
let y = g() in
e 

let y = g () in
let x = f () in
e 

let y_g = future g () in
let x   = f ()        in
let y   = force y_g in
e 

let x_f = future f () in
let y   = g ()        in
let x   = force x_f in
e 



John W. Backus, 1924-2007

A pioneer in programming languages

Designer of FORTRAN,
inventor of Backus-Naur form for context-free grammars
co-designer of ALGOL,
winner of Turing award (1977).

Read his obituary at https://www.nature.com/articles/446998a
to see that the mid 20th century was really generous*
with second chances!

*if your family was “wealthy and socially prominent”

https://www.nature.com/articles/446998a


SUMMARY



Programming with mutation, threads and locks

...
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...
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...
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...

...

...

thread 1 thread 2Parallel programming can be really tricky!

Much of programming-language design
is the art of finding structure that encourages
good programs and discourages bad ones.

future : (’a->’b) -> ’a -> ‘b future 
force : ’a future -> ‘a 

Functional programming, plus the future
construct, is easier to reason about* ** ***

* in purely functional programs
** the type system helps (though you still have to put your force in the right places)
*** but future doesn’t help you reason about parallel performance


