
Type Checking
Part 4: Type Inference (Quantifiers)

Speaker: David Walker
COS 326

Princeton University

slides copyright 2020 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Last Time: A Declarative Type Inference Algorithm
1) Add dis(nct variables in all places type schemes are needed

2) Generate equa(ons

3) Solve the equa(ons using unifica(on, producing a subs(tu(on
for type variables, or recognize an inconsistency

... but this was an algorithm for inferring simple types: we didn't
explain how or when polymorphic quan;fiers could be introduced.

2

Generalization

Where do we introduce polymorphic values? Consider:

It is temp(ng to do something like this:

But recall the discussion from last (me:
If we aren’t careful, we run into decidability issues

(fun x -> 3) : forall a. a -> int

g (fun x -> 3)

g : (forall a. a -> int) -> int

Generalization

Where do we introduce polymorphic values?

In ML languages: Only when values bound in ”let declara(ons”

g (fun x -> 3)

let f : forall a. a -> a = fun x -> 3 in
g f

No polymorphism for fun x -> 3!

Yes polymorphism for f!

Let Polymorphism

Where do we introduce polymorphic values?

let x = v

Rule:
• if v is a value (or guaranteed to evaluate to a value without effects)

• OCaml has some rules for this
• and v has type scheme s
• and s has free variables a, b, c, ...
• and a, b, c, ... do not appear in the types of other values in the context
• then x can have type forall a, b, c. s

Let Polymorphism

Where do we introduce polymorphic values?

let x = v

Rule:
• if v is a value (or guaranteed to evaluate to a value without effects)

• OCaml has some rules for this
• and v has type scheme s
• and s has free variables a, b, c, ...
• and a, b, c, ... do not appear in the types of other values in the context
• then x can have type forall a, b, c. s

That’s a hell of a lot more complicated than you
thought, eh?

Unsound Generalization Example

Consider this function f – a fancy identity function:

let f = fun x -> let y = x in y

A sensible type for f would be:

f : forall a. a -> a

Unsound GeneralizaIon Example

Consider this function f – a fancy identity function:

let f = fun x -> let y = x in y

A bad (unsound) type for f would be:

f : forall a, b. a -> b

Unsound GeneralizaIon Example

Consider this function f – a fancy identity function:

let f = fun x -> let y = x in y

A bad (unsound) type for f would be:

f : forall a, b. a -> b

(f true) + 7

goes wrong! but if f can have the bad type,
it all type checks. This counterexample to soundness shows
that f can’t possible be given the bad type safely

Unsound Generalization Example

Now, consider doing type inference:

let f = fun x -> let y = x in y

x : a

Unsound GeneralizaIon Example

Now, consider doing type inference:

let f = fun x -> let y = x in y

x : a

suppose we generalize and allow y : forall a.a

Unsound GeneralizaIon Example

Now, consider doing type inference:

let f = fun x -> let y = x in y

x : a

suppose we generalize and allow y : forall a.a

then we
can use y
as if it has
any type,
such as y : b

Unsound Generalization Example

Now, consider doing type inference:

let f = fun x -> let y = x in y

x : a

suppose we generalize and allow y : forall a.a

then we
can use y
as if it has
any type,
such as y : b

but now we have inferred that (fun x -> ...) : a -> b
and if we generalize again,
f : forall a,b. a -> b

That’s the bad type!

Unsound Generalization Example

Now, consider doing type inference:

let f = fun x -> let y = x in y

x : a

suppose we generalize and allow y : forall a.a

this was the bad step – y can’t really have
any type at all. Its type has got to be the same
as whatever the argument x is.

x was in the context when we tried to generalize y!

The Value Restriction

let x = v

this has got to be a value
to enable polymorphic
generalization

Unsound Generalization Again

let x = ref [] in x : forall a . a list ref

not a value!

Unsound GeneralizaIon Again

let x = ref [] in

x := [true];

x : forall a . a list ref

use x at type bool as if x : bool list ref

not a value!

Unsound GeneralizaIon Again

let x = ref [] in

x := [true];

List.hd (!x) + 3

x : forall a . a list ref

use x at type bool as if x : bool list ref

use x at type int as if x : int list ref

and we crash

What does OCaml do?

let x = ref [] in x : '_weak1 list ref

a “weak” type variable
can’t be generalized

means “I don’t know
what type this is but
it can only be one
particular type”

look for the “_” to begin
a type variable name

What does OCaml do?

let x = ref [] in

x := [true];

x : '_weak1 list ref

x : bool list ref

the “weak” type variable
is now fixed as a bool
and can’t be anything else

bool was substituted for
‘_weak during type
inference

What does OCaml do?

let x = ref [] in

x := [true];

List.hd (!x) + 3

x : '_weak1 list ref

x : bool list ref

Error: This expression has type bool
but an expression was expected
of type int

type error ...

One other example

let x = fun () -> ref [] in

x () := [true];

List.hd (!x ()) + 3

x : forall ’a. unit -> ‘a list ref

x () : bool list ref

what is the result of this program?

notice that the RHS is now a value
– it happens to be a function value
but any sort of value will do

now generalizaTon
is allowed

x () : int list ref

List.hd raises an exception because it is applied to the empty list. why?

One other example

let x = fun () -> ref [] in

x () := [true];

List.hd (!x ()) + 3

what is the result of this program?

notice that the RHS is now a value
– it happens to be a function value
but any sort of value will do

List.hd raises an exception because it is applied to the empty list. why?

creates one reference

creates a second totally
different reference

creates a new, different reference
every time it is called

TYPE INFERENCE:
THINGS TO REMEMBER

Type Inference: Things to remember
Declarative algorithm: Given a context G, and untyped term u:

– Find e, t, q such that G Ͱ u ==> e : t, q
• understand the constraints that need to be generated

– Find substitution S that acts as a solution to q via unification
• if no solution exists, there is no reconstruction

– Apply S to e, ie our solution is S(e)
• S(e) contains schematic type variables a,b,c, etc that may be

instantiated with any type

– Since S is principal, S(e) characterizes all reconstructions.

– If desired, use the type checking algorithm to validate

Type Inference: Things to remember
In order to introduce polymorphic quan(fiers, remember:

– QuanGfiers must be on the outside only
• this is called “prenex” quanTficaTon
• otherwise, type inference may become undecidable

– QuanGfiers can only be introduced at let bindings:
• let x = v
• only the type variables that do not appear in the environment may

be generalized

– The expression on the right-hand side must be a value
• no references or excepTons
• in OCaml, you'll get "weak" type variables otherwise

Efficient type inference
Didier Rémy discovered the type generalization algorithm based on levels
when working on his Ph.D. on type inference of records and variants. He
prototyped his record inference in the original Caml (long before OCaml).
He had to recompile Caml frequently, which took a long time. The type
inference of Caml was the bottleneck: “The heart of the compiler code
were two mutually recursive functions for compiling expressions and
patterns, a few hundred lines of code together, but taking around 20
minutes to type check! This file alone was taking an abnormal proportion
of the bootstrap cycle.”

“I implemented unification on graphs in O(n log n)---doing path compression and
postponing the occurs-check; I kept the sharing introduced in types all the way down
without breaking it during generalization/instantiation; and I introduced the rank-based type
generalization.”
This efficient type inference algorithm was described in Rémy's PhD dissertation (in French)
and in the 1992 technical report.

Type inference in Caml was slow for several reasons. Instantiation of a
type schema would create a new copy of the entire type -- even of the parts
without quantified variables, which can be shared instead. Doing the occurs
check on every unification of a free type variable (as in our eager toy
algorithm), and scanning the whole type environment on each
generalization increased the time complexity of inference.

Quoted from: Oleg Kiselyov, hCp://okmij.org/Gp/ML/generalizaKon.html

http://okmij.org/ftp/ML/generalization.html

