
Lazy Evaluation &
Infinite Data

COS 326

Speaker: Andrew Appel

Princeton University

Some ideas in this lecture borrowed from Brigitte Pientka, McGill University

slides copyright 2020 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

AN INFINITE DATA STRUCTURE:
STREAMS

Streams

Sometimes it is useful to define the entirety of an infinite data set now
and sample finite parts of it later ...

Streams

2 3primes 5 ...

Sometimes it is useful to define the entirety of an infinite data set now
and sample finite parts of it later ...

Streams

2 3primes 5 ...

3 1pi 4 ...

Sometimes it is useful to define the entirety of an infinite data set now
and sample finite parts of it later ...

Streams

2 3primes 5 ...

3 1pi 4 ...

Bid1 Bid2
market Bid3 ...

Sometimes it is useful to define the entirety of an infinite data set now
and sample finite parts of it later ...

Consider this definition:

7

We can write functions to extract the head and tail of a stream:

type ’a stream =

Cons of ’a * (’a stream)

let head(s:’a stream):’a =

match s with

| Cons (h,_) -> h

let tail(s:’a stream):’a stream =

match s with

| Cons (_,t) -> t

But there’s a problem…

8

How do I build a value of type ’a stream?

Cons (3, Cons (4, ___)) Cons (3, ___)

type ’a stream =

Cons of ’a * (’a stream)

But there’s a problem…

9

How do I build a value of type ’a stream?

There doesn’t seem to be a base case (e.g., Nil)

Since we need a stream to build a stream,
what can we do to get started?

Cons (3, Cons (4, ___)) Cons (3, ___)

type ’a stream =

Cons of ’a * (’a stream)

An alternative would be to use refs

This works ...

but has a serious drawback

None

Cons(h, r)

r

None

c

Cons(h, r)

Some c

c

type ’a stream =

Cons of ’a * (’a stream) option ref

let circular_cons h =

let r = ref None in

let c = Cons(h,r) in

(r := (Some c); c)

An alternative would be to use refs

11

.... when we try to get out the tail, it may not exist.

type ’a stream =

Cons of ’a * (’a stream) option ref

let circular_cons h =

let r = ref None in

let c = Cons(h,r) in

(r := (Some c); c)

Back to our earlier idea

12

Let's look at creating the stream of all natural numbers:

let n = nats 0;;
Stack overflow during evaluation (looping recursion?).

OCaml evaluates our code just a little bit too eagerly.
We want to evaluate the right-hand side only when necessary ...

type ’a stream =

Cons of ’a * (’a stream)

let rec nats i = Cons(i,nats (i+1))

Another idea

13

One way to implement “waiting” is to wrap a computation
up in a function and then call that function later when we want to.

Another attempt:

Darn. Doesn’t type check!
It’s a function with type
unit -> int stream
not just int stream

Are there any problems
with this code?

type ’a stream =

Cons of ’a * (’a stream)

let rec ones =

fun () -> Cons(1,ones)

let head x =

match x () with

Cons (hd, tail) -> hd

Functional Implementation

14

What if we changed the definition of streams one more time?

Or, the way we’d normally write it:

mutually recursive
type definition

type ’a str = Cons of ’a * (’a stream)

and ’a stream = unit -> ’a str

let rec ones : int stream =

fun () -> Cons(1,ones)

let rec ones () = Cons(1,ones)

Functional Implementation

15

How would we define head, tail, and map of an ’a stream?

type ’a str = Cons of ’a * (’a stream)

and ’a stream = unit -> ’a str

Functional Implementation

16

How would we define head, tail, and map of an ’a stream?

type ’a str = Cons of ’a * (’a stream)

and ’a stream = unit -> ’a str

let head(s:’a stream):’a =

...

Functional Implementation

17

How would we define head, tail, and map of an ’a stream?

type ’a str = Cons of ’a * (’a stream)

and ’a stream = unit -> ’a str

let head(s:’a stream):’a =

match s() with

| Cons(h,_) -> h

Functional Implementation

18

How would we define head, tail, and map of an ’a stream?

type ’a str = Cons of ’a * (’a stream)

and ’a stream = unit -> ’a str

let head(s:’a stream):’a =

match s() with

| Cons(h,_) -> h

let tail(s:’a stream):’a stream =

...

Functional Implementation

19

How would we define head, tail, and map of an ’a stream?

type ’a str = Cons of ’a * (’a stream)

and ’a stream = unit -> ’a str

let head(s:’a stream):’a =

match s() with

| Cons(h,_) -> h

let tail(s:’a stream):’a stream =

match s() with

| Cons(_,t) -> t

Functional Implementation

20

How would we define head, tail, and map of an ’a stream?

type ’a str = Cons of ’a * (’a stream)

and ’a stream = unit -> ’a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =

...

Functional Implementation

21

How would we define head, tail, and map of an ’a stream?

type ’a str = Cons of ’a * (’a stream)

and ’a stream = unit -> ’a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =

Cons(f (head s), map f (tail s))

Functional Implementation

22

How would we define head, tail, and map of an ’a stream?

type ’a str = Cons of ’a * (’a stream)

and ’a stream = unit -> ’a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =

Cons(f (head s), map f (tail s))

Rats!

Infinite looping!

Functional Implementation

23

How would we define head, tail, and map of an ’a stream?

type ’a str = Cons of ’a * (’a stream)

and ’a stream = unit -> ’a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =

Cons(f (head s), map f (tail s))

Doesn’t type check!
Cons (x,y) is a str not a stream

Functional Implementation

24

How would we define head, tail, and map of an ’a stream?

type ’a str = Cons of ’a * (’a stream)

and ’a stream = unit -> ’a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =

fun () -> Cons(f (head s), map f (tail s))

Importantly, map
must return a

function, which
delays evaluating

the recursive call to
map.

Functional Implementation

25

How would we define head, tail, and map of an ’a stream?

type ’a str = Cons of ’a * (’a stream)

and ’a stream = unit -> ’a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =

fun () -> Cons(f (head s), map f (tail s))

let rec ones = fun () -> Cons(1,ones)

let inc x = x + 1

let twos = map inc ones

Functional Implementation

26

type ’a str = Cons of ’a * (’a stream)

and ’a stream = unit -> ’a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =

fun () -> Cons(f (head s), map f (tail s))

let rec ones = fun () -> Cons(1,ones)

let twos = map (fun x -> x+1) ones

head twos
--> head (map inc ones)
--> head (fun () -> Cons (inc (head ones), map inc (tail ones)))
--> match (fun () -> ...) () with Cons (h, _) -> h
--> match Cons (inc (head ones), map inc (tail ones)) with Cons (h, _) -> h
--> match Cons (inc (head ones), fun () -> ...) with Cons (h, _) -> h
--> ... --> 2

Functional Implementation

27

type ’a str = Cons of ’a * (’a stream)

and ’a stream = unit -> ’a str

let rec zip f s1 s2 =

fun () ->

Cons(f (head s1) (head s2),

zip f (tail s1) (tail s2))

Functional Implementation

28

type ’a str = Cons of ’a * (’a stream)

and ’a stream = unit -> ’a str

let rec zip f s1 s2 =

fun () ->

Cons(f (head s1) (head s2),

zip f (tail s1) (tail s2))

let threes = zip (+) ones twos

Functional Implementation

29

type ’a str = Cons of ’a * (’a stream)

and ’a stream = unit -> ’a str

let rec zip f s1 s2 =

fun () ->

Cons(f (head s1) (head s2),

zip f (tail s1) (tail s2))

let threes = zip (+) ones twos

let rec fibs =

fun () ->

Cons(0, fun () ->

Cons (1,

zip (+) fibs (tail fibs)))

Unfortunately

30

This is not very efficient:

Every time we want to look at a stream (e.g., to get the head or
tail), we have to re-run the function.

type ’a str = Cons of ’a * (’a stream)

and ’a stream = unit -> ’a str

Unfortunately

31

This is not very efficient:

Every time we want to look at a stream (e.g., to get the head or
tail), we have to re-run the function.

type ’a str = Cons of ’a * (’a stream)

and ’a stream = unit -> ’a str

let x = head s

let y = head s rerun the entire
underlying function
as opposed to fetching
the first element of
a list

let head(s:’a stream):’a =

match s() with

| Cons(h,_) -> h

Unfortunately

32

This is really, really inefficient:

So when you ask for the 10th fib and then the 11th fib, we are re-
calculating the fibs starting from 0...

let rec fibs =

fun () ->

Cons(0, fun () ->

Cons (1,

zip (+) fibs (tail fibs)))

If we could cache or memoize the result of previous fibs...

let rec fib n = if n<2 then n else fib(n-1)+fib(n-2)

It takes exponential time, the same way this function does:

LAZY EVALUATION

Lazy Data

We can take advantage of mutation to memoize:

type ’a lazy_t = ’a thunk ref

type ’a thunk =

Unevaluated of (unit -> ’a) | Evaluated of ’a

Unevaluated

fun x ->

Evaluated 3

initially: after evaluating once:

Lazy Data

We can take advantage of mutation to memoize:

type ’a lazy_t = ’a thunk ref

type ’a thunk =

Unevaluated of (unit -> ’a) | Evaluated of ’a

type ’a str = Cons of ’a * (’a stream)

and ’a stream = (’a str) lazy_t

Lazy Data

type ’a lazy_t = ’a thunk ref

type ’a thunk =

Unevaluated of (unit -> ’a) | Evaluated of ’a

type ’a str = Cons of ’a * (’a stream)

and ’a stream = (’a str) lazy_t

let rec head(s:’a stream):’a =

Lazy Data

type ’a lazy_t = ’a thunk ref

type ’a thunk =

Unevaluated of (unit -> ’a) | Evaluated of ’a

type ’a str = Cons of ’a * (’a stream)

and ’a stream = (’a str) lazy_t

let rec head(s:’a stream):’a =

match !s with

| Evaluated (Cons(h,_)) ->

| Unevaluated f ->

Lazy Data

type ’a lazy_t = ’a thunk ref

type ’a thunk =

Unevaluated of (unit -> ’a) | Evaluated of ’a

type ’a str = Cons of ’a * (’a stream)

and ’a stream = (’a str) lazy_t

let rec head(s:’a stream):’a =

match !s with

| Evaluated (Cons(h,_)) -> h

| Unevaluated f ->

Lazy Data

type ’a lazy_t = ’a thunk ref

type ’a thunk =

Unevaluated of (unit -> ’a) | Evaluated of ’a

type ’a str = Cons of ’a * (’a stream)

and ’a stream = (’a str) lazy_t

let rec head(s:’a stream):’a =

match !s with

| Evaluated (Cons(h,_)) -> h

| Unevaluated f ->

let x = f() in (s := Evaluated x; head s)

Lazy Data

type ’a lazy_t = ’a thunk ref

type ’a thunk =

Unevaluated of (unit -> ’a) | Evaluated of ’a

type ’a str = Cons of ’a * (’a stream)

and ’a stream = (’a str) lazy_t

let rec tail(s:’a stream) : ’a stream =

match !s with

| Evaluated (Cons(_,t)) -> t

| Unevaluated f ->

(let x = f () in s := Evaluated x; tail s)

Lazy Data

type ’a lazy_t = ’a thunk ref

type ’a thunk =

Unevaluated of (unit -> ’a) | Evaluated of ’a

type ’a str = Cons of ’a * (’a stream)

and ’a stream = (’a str) lazy_t

let rec tail(s:’a stream) : ’a stream =

match !s with

| Evaluated (Cons(_,t)) -> t

| Unevaluated f ->

let x = f() in (s := Evaluated x; tail s)

let rec head(s:’a stream):’a =

match !s with

| Evaluated (Cons(h,_)) -> h

| Unevaluated f ->

let x = f() in (s := Evaluated x; head s)

Lazy Data

type ’a lazy_t = ’a thunk ref

type ’a thunk =

Unevaluated of (unit -> ’a) | Evaluated of ’a

type ’a str = Cons of ’a * (’a stream)

and ’a stream = (’a str) lazy_t

let rec tail(s:’a stream) : ’a stream =

match !s with

| Evaluated (Cons(_,t)) -> t

| Unevaluated f ->

let x = f() in (s := Evaluated x; tail s)

let rec head(s:’a stream):’a =

match !s with

| Evaluated (Cons(h,_)) -> h

| Unevaluated f ->

let x = f() in (s := Evaluated x; head s)

Common pattern!

Dereference & check if evaluated:
• If so, take the value.
• If not, evaluate it & take the

value

Memoizing Streams

type ’a thunk =

Unevaluated of (unit -> ’a) | Evaluated of ’a

type ’a lazy_t = (’a thunk) ref

type ’a str = Cons of ’a * (’a stream)

and ’a stream = (’a str) lazy_t

let rec force(t:’a lazy_t):’a =

match !t with

| Evaluated v -> v

| Unevaluated f ->

let v = f() in

(t:= Evaluated v ; v)

let head(s:’a stream) : ’a =

match force s with

| Cons(h,_) -> h

let tail(s:’a stream) : ’a stream =

match force s with

| Cons(_,t) -> t

Memoizing Streams

type ’a thunk =

Unevaluated of unit -> ’a | Evaluated of ’a

type ’a str = Cons of ’a * (’a stream)

and ’a stream = (’a str) thunk ref

let rec ones =

ref (Unevaluated (fun () -> Cons(1,ones)))

Memoizing Streams

type ’a thunk =

Unevaluated of unit -> ’a | Evaluated of ’a

type ’a str = Cons of ’a * (’a stream)

and ’a stream = (’a str) thunk ref

let lazy f = ref (Unevaluated f)

let rec ones =

lazy (fun () -> Cons(1,ones))

What’s the interface?

46

type ’a lazy_t

val lazy : (unit -> ’a) -> ’a lazy_t

val force : ’a lazy_t -> ’a

type ’a str = Cons of ’a * (’a stream)

and ’a stream = (’a str) lazy_t

let rec ones =

lazy(fun () -> Cons(1,ones))

What’s the interface?

type ’a lazy_t

val lazy : (unit -> ’a) -> ’a lazy_t

val force : ’a lazy_t -> ’a

type ’a str = Cons of ’a * (’a stream)

and ’a stream = (’a str) lazy_t

let rec zip f s1 s2 = lazy (fun () ->

match force s1, force s2 with

Cons (x1,r1), Cons (x2,r2) -> Cons (f x1 x2,

zip f r1 r2)

)

OCaml’s Builtin Lazy Constructor

48

If you use Ocaml’s built-in Lazy.t, then you can write:

and this takes care of wrapping a “ref (Unevaluated (fun () -> …))”
around the whole thing. It has the effect of suspending the
computation until you use Lazy.force

So for example:

let rec ones = lazy (Cons(1,ones))

let rec fibs =

lazy (Cons(0,

lazy (Cons(1,

zip (+) fibs (tail fibs)))))

The whole example at once

type ’a str = Cons of ’a * ’a stream

and ’a stream = (’a str) Lazy.t;;

let rec zip f (s1: ’a stream) (s2: ’a stream) : ’a stream =

lazy (match Lazy.force s1, Lazy.force s2 with

Cons (x1,r1), Cons (x2,r2) ->

Cons (f x1 x2, zip f r1 r2))

let tail (s: ’a stream) : ’a stream =

match Lazy.force s with Cons (x,r) -> r

let rec fibs : int stream =

lazy (Cons(0, lazy (Cons (1, zip (+) fibs (tail fibs)))));;

let rec printn n s =

if n>0 then

match Lazy.force s with

Cons (x,r) -> (printf “%d\n” x; printn (n-1) r)

let _ = printn 10 fibs

EVALUATION ORDER:
CALL-BY-VALUE VS
CALL-BY-NAME VS
LAZY (a.k.a. CALL-BY-NEED)

OCaml is Call-by-value

let x = e1 in e2

Evaluation strategy:
• evaluate e1 until you get a value
• bind that value to x
• evaluate e2 until you get a value

let x = 2 + 3 in x – 7
--> let x = 5 in x – 7
--> 5 – 7
--> -2

Example

evaluate 2 + 3 first

OCaml is Call-by-value

let x = e1 in e2

Evaluation strategy:
• evaluate e1 until you get a value
• bind that value to x
• evaluate e2 until you get a value

e1 e2

Evaluation strategy:
• evaluate e1 until you get a value (fun x -> e)
• evaluate e2 until you get a value (v)
• substitute v for x in e to get e’
• continue evaluating e’ until you get a value

OCaml is Call-by-value

let x = e1 in e2

Evaluation strategy:
• evaluate e1 until you get a value
• bind that value to x
• evaluate e2 until you get a value

e1 e2

Evaluation strategy:
• evaluate e1 until you get a value (fun x -> e)
• evaluate e2 until you get a value (v)
• substitute v for x in e to get e’
• continue evaluating e’ until you get a value

Is this the only way we could evaluate these expressions?
Is this the most efficient way we could evaluate these expressions?

OCaml is Call-by-value

let x = e1 in e2

Evaluation strategy:
• evaluate e1 until you get a value
• bind that value to x
• evaluate e2 until you get a value

e1 e2

Evaluation strategy:
• evaluate e1 until you get a value (fun x -> e)
• evaluate e2 until you get a value (v)
• substitute v for x in e to get e’
• continue evaluating e’ until you get a value

Is this the only way we could evaluate these expressions? No!
Is this the most efficient way we could evaluate these expressions? No!

Call-by-Name

let x = e1 in e2
Evaluation strategy:
• bind that expression e1 to x
• continue to evaluate e2

let x = 2 + 3 in x – 7
--> (2 + 3) – 7
--> 5 – 7
--> -2

Example

Call-by-Name

let x = e1 in e2
Evaluation strategy:
• bind that expression e1 to x
• continue to evaluate e2

let x = work () in 7
--> 7

Call-by-name
can avoid
work sometimes:

Call-by-Name

let x = e1 in e2
Evaluation strategy:
• bind that expression e1 to x
• continue to evaluate e2

let x = loop_forever () in 7
--> 7

Call-by-name
can avoid A LOT of
work sometimes:

Call-by-Name

let x = e1 in e2
Evaluation strategy:
• bind that expression e1 to x
• continue to evaluate e2

let x = work () in x + x
--> (work ()) + (work ())

But sometimes
it does more
work than
necessary

Call-by-Name (CBN) vs Call-by-Value (CBV)

In general:
CBV can be asymptotically faster than CBN (by exponential factor at least!)

CBN can be asymptotically faster than CBV (by exponential factor at least!)

However:
CBV can diverge (infinite-loop) where CBN terminates but not vice versa!
If CBN diverges, then ANY strategy diverges

Therefore:
CBN is the “most general” strategy, in the sense that it terminates as often
as possible. Though it definitely isn’t necessarily fastest!

by the way, guess who figured all this out:
Alonzo Church and his graduate students, Princeton University, 1930s

Call-by-Name vs Lazy

let x = e1 in e2
Lazy evaluation is like call-by-name
but it avoids repeatedly executing
e1 by using memoization – it computes
an answer once and then remembers
the result if x is ever needed a 2nd or
3rd time

let x = work () in x + x
--> ...
--> ...

The operational semantics notation
is less compact when it comes to
describing lazy computations
because we have to keep track
of the imperative state used
for memoization. So I won’t try here.

Call-by-Name vs Lazy vs Call-by-Value

In general:

LAZY can be asymptotically faster than CBN.

– thanks to memoization – no repeated calls

CBN is never asymptotically faster than LAZY.

CBN terminates if-and-only-iff LAZY terminates.

(Thus) LAZY is also a most-general strategy.

In practice:

• Data structures used to memoize computations take up space

– thunks hang on to data structures, making it tough to reason about

• Much optimization needed for CBN to approach CBV performance

• But laziness (“deferred, call-by-need computation”) can be useful

– we can program with selective laziness in call-by-value languages

Historical note

The term “thunk” was introduced in 1960 to describe a way of implementing
call-by-name function-parameters in Algol 60,

by P. Z. Ingerman of U. Penn.

An early form of “closures” (for environments of thunks) was invented by:

Ned Irons ’58 of Princeton University and Wally Feurzig of U. Chicago.

Ned Irons was one of the most brilliant programmers of his time.

Wally Feurzig was a pioneer in A.I. and in C.S. education, a collaborator of
Turing award winners Marvin Minsky (PhD Princeton 1951) and John
McCarthy (PhD Princeton 1951).

1. P.Z. Ingerman, "Thunks: a way of compiling procedure statements with some comments on
procedure declarations". Communications of the ACM 4 (1): 55–58, 1961.

2. E. T. Irons and W. Feurzig, "Comments on the Implementation of Recursive Procedures and
Blocks in ALGOL". Communications of the ACM 4 (1): 65–69, 1961.

Summary

63

By default, OCaml (and Java, C, etc) is an eager language

• but you can use thunks or “lazy” to suspend computations

• use “force” to run the computation when needed

By default, Haskell is a lazy language

• the implementers (eg: Simon Peyton Jones) would probably make it
eager by default if they had a do-over

• working with infinite data is generally more pleasant

• but difficult to reason about space and time

Lazy evaluation makes it possible to build infinite data structures.

• can be modelled using functions

• but adding refs allows memoization

