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C structures are mutable, ML structures are immutable
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xxx

struct foo {int x; int y} *p;

int a,b,u;

a = p->x;

u = f(p);

b = p->x;

/* does a==b?  maybe */

let fst(x:int,y:int) = x

let p: int*int = ... in 

let a = fst p in

let u = f p in

let b = fst p in

(* does a==b?  Yes! *)

C program OCaml program



Reasoning about Mutable State is Hard

3

Is member i s1 == true? …

– When s1 is mutable, one must look at f to determine if it 
modifies s1.

– Worse, one must often solve the  aliasing problem.

– Worse, in a concurrent setting, one must look at every other 
function that any other thread may be executing to see if it 
modifies s1.

insert i s1;

f x;

member i s1

let s1 = insert i s0 in

f x;

member i s1

mutable set immutable set



Thus far…
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We have considered the (almost) purely functional subset of OCaml.
– We’ve had a few side effects:  printing & raising exceptions.

Two reasons for this emphasis:
– Reasoning about functional code is easier.

• Both formal reasoning 
– equationally, using the substitution model
– and informal reasoning

• Data structures are persistent.  
– They don’t change – we build new ones and let the garbage collector 

reclaim the unused old ones.
• Hence, any invariant you prove true stays true.

– e.g., 3 is a member of set S.
– To convince you that you don’t need side effects for many things where you 

previously thought you did.
• Programming with basic immutable data like ints, pairs, lists is easy.

– types do a lot of testing for you!
– do not fear recursion!

• You can implement expressive, highly reusable functional data structures 
like polymorphic 2-3 trees or dictionaries or stacks or queues or sets or 
expressions or programming languages with reasonable space and time.



But alas…
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Purely functional code is pointless.
– The whole reason we write code is to have some effect on the world.  
– For example, the OCaml top-level loop prints out your result.

• Without that printing (a side effect), how would you know that your functions 
computed the right thing?  

Some algorithms or data structures need mutable state.
– Hash-tables have (essentially) constant-time access and update.

• The best functional dictionaries have either:
– logarithmic access & logarithmic update
– constant access & linear update
– constant update & linear access

• Don’t forget that we give up something for this:  
– we can’t go back and look at previous versions of the dictionary.  We can 

do that in a functional setting.

– Robinson’s unification algorithm
• A critical part of the OCaml type-inference engine.
• Also used in other kinds of program analyses.

– Depth-first search, union-find, more ...

However, purely mostly functional code is amazingly productive



The value of a classics degree
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John Alan Robinson
1928 –

PhD Princeton 1956 (philosophy)

"Robinson was born in Yorkshire, England in 1930 and left for the United States in 
1952 with a classics degree from Cambridge University. He studied philosophy at 
the University of Oregon before moving to Princeton University where he received 
his PhD in philosophy in 1956. He then worked at Du Pont as an operations 
research analyst, where he learned programming and taught himself 
mathematics. He moved to Rice University in 1961, spending his summers as a 
visiting researcher at the Argonne National Laboratory's Applied Mathematics 
Division. He moved to Syracuse University as Distinguished Professor of Logic and 
Computer Science in 1967 and became professor emeritus in 1993." 
--Wikipedia 

Inventor (1960s) of algorithms 
now fundamental to computational
logical reasoning (about software,
hardware, and other things…) John Alan Robinson

1928 – 2016
PhD Princeton 1956 (philosophy)



OCAML MUTABLE REFERENCES



References
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• New type:  t ref

– Think of it as a pointer to a box that holds a t value.

– The contents of the box can be read or written.



References
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• New type:  t ref

– Think of it as a pointer to a box that holds a t value.

– The contents of the box can be read or written.

• To create a fresh box:   ref 42 

– allocates a new box, initializes its contents to 42, and returns a pointer:

– ref 42 : int ref

42



References
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• New type:  t ref

– Think of it as a pointer to a box that holds a t value.

– The contents of the box can be read or written.

• To create a fresh box:   ref 42 

– allocates a new box, initializes its contents to 42, and returns a pointer:

– ref 42 : int ref

• To read the contents: !r

– if r points to a box containing 42, then return 42.

– if r : t ref then !r : t

• To write the contents:  r := 5

– updates the box that r points to so that it contains 5.

– if r : t ref then r := 5 : unit

42



Example
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let c = ref 0 in

let x = !c in (* x will be 0 *)

c := 42;

let y = !c in (* y will be 42.

x will still be 0! *)



Another Example
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let c = ref 0 ;;

let next() = 

let v = !c in

(c := v+1 ; v)



Another Example
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let c = ref 0 

let next() = 

let v = !c in

(c := v+1 ; v)

If  e1 : unit 
and e2 : t then 
(e1 ; e2) : t



You can also write it like this:
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let c = ref 0 

let next() = 

let v = !c in

let _ = c := v+1 in

v



Another Idiom
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let c = ref 0 

let next () : int = 

let v = !c in

(c := v+1 ; v)

c

3

code

countA

Global Mutable Reference

let counter () =

let c = ref 0 in

fun () -> 

let v = !c in

(c := v+1 ; v)

let countA = counter() in

let countB = counter() in

countA() ; (* 0 *)

countA() ; (* 1 *)

countB() ; (* 0 *)

countB() ; (* 1 *) 

countA() ; (* 2 *)     

Mutable Reference Captured in Closure



Imperative loops

(* sum of 0 .. n *)

let sum (n:int) = 

let s = ref 0 in

let current = ref n in

while !current > 0 do

s := !s + !current;

current := !current - 1

done;

!s

(* print n .. 0 *)

let count_down (n:int) = 

for i = n downto 0 do

print_int i;

print_newline()

done

(* print 0 .. n *)

let count_up (n:int) = 

for i = 0 to n do

print_int i;

print_newline()

done



Imperative loops?

(* print n .. 0 *)

let count_down (n:int) = 

for i = n downto 0 do

print_int i;

print_newline()

done

(* for i=n downto 0 do f i *)

let rec for_down

(n : int) 

(f : int -> unit)

: unit = 

if n >= 0 then

(f n; for_down (n-1) f)

else

()

let count_down (n:int) =

for_down n (fun i ->

print_int i;

print_newline()

)



REFS AND MODULES



Types and References

Concrete, first-order type tells you a lot about a data structure:

• int ==> immutable

• int ref ==> mutable

• int * int ==> immutable

• int * (int ref) ==> 1st component immutable, 2nd mutable

• ... etc

What about higher-order types?

• int -> int ==> the function can't be changed

==> what happens when we run it?

What about abstract types?

• stack, queue?  stack * queue?  



Functional Stacks
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module type STACK = 

sig

type ‘a stack

val empty : unit -> ‘a stack

val push : ‘a -> ‘a stack -> ‘a stack

val peek : ‘a stack -> ‘a option

...

end



Functional Stacks
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module type STACK = 

sig

type ‘a stack

val empty : unit -> ‘a stack

val push : ‘a -> ‘a stack -> ‘a stack

val peek : ‘a stack -> ‘a option

...

end

A functional interface takes 
in arguments, analyzes them, 

and produces new results



Imperative Stacks
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module type IMP_STACK = 

sig

type ‘a stack

val empty : unit -> ‘a stack

val push : ‘a -> ‘a stack -> unit

val peek : ‘a stack -> ‘a option

...

end



Imperative Stacks
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module type IMP_STACK = 

sig

type ‘a stack

val empty : unit -> ‘a stack

val push : ‘a -> ‘a stack -> unit

val peek : ‘a stack -> ‘a option

...

end When you see “unit” as the 
return type, you know the 
function is being executed 

for its side effects.  (Like void 
in C/C++/Java.)



Imperative Stacks
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module type IMP_STACK = 

sig

type ‘a stack

val empty : unit -> ‘a stack

val push : ‘a -> ‘a stack -> unit

val peek : ‘a stack -> ‘a option

val pop : ‘a stack -> ‘a option

end

Unfortunately, we can’t always tell 
from the type that there are side-
effects going on.  It’s a good idea 

to document them explicitly if the 
user can perceive them. 



Imperative Stacks
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module type IMP_STACK = 

sig

type ‘a stack

val empty : unit -> ‘a stack

val push: ‘a -> ‘a stack -> unit

val pop : ‘a stack -> ‘a option

end module ImpStack : IMP_STACK = 

struct

type ‘a stack = (‘a list) ref

let empty() : ‘a stack = ref []

let push(x:’a)(s:’a stack) : unit = 

s := x::(!s)

let pop(s:’a stack) : ‘a option = 

match !s with 

| [] -> None

| h::t -> (s := t ; Some h)

end



Imperative Stacks
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module type IMP_STACK = 

sig

type ‘a stack

val empty : unit -> ‘a stack

val push: ‘a -> ‘a stack -> unit

val pop : ‘a stack -> ‘a option

end module ImpStack : IMP_STACK = 

struct

type ‘a stack = (‘a list) ref

let empty() : ‘a stack = ref []

let push(x:’a)(s:’a stack) : unit = 

s := x::(!s)

let pop(s:’a stack) : ‘a option = 

match !s with 

| [] -> None

| h::t -> (s := t ; Some h)

end

Note:  We don't have to 
make everything mutable.  

The list is an immutable 
data structure stored in a 

single mutable cell.



Fully Mutable Lists
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type ‘a mlist = 

Nil | Cons of ‘a * (‘a mlist ref)

let ml = Cons(1, ref (Cons(2, ref 

(Cons(3, ref Nil)))))

ml

1 2

ref refconscons refcons

3



Fraught with Peril
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type ‘a mlist = 

Nil | Cons of ‘a * (‘a mlist ref)

let rec mlength(m:’a mlist) : int =

match m with

| Nil -> 0 

| Cons(h,t) -> 1 + length(!t)

let r = ref Nil ;;

let m = Cons(3,r) ;; 

r := m ;;

mlength m ;;  



Fraught with Peril

37

type ‘a mlist = 

Nil | Cons of ‘a * (‘a mlist ref)

let rec mlength(m:’a mlist) : int =

match m with

| Nil -> 0 

| Cons(h,t) -> 1 + mlength(!t)

let r = ref Nil in

let m = Cons(3,r) in

r := m ;

mlength m   

r



Fraught with Peril
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type ‘a mlist = 

Nil | Cons of ‘a * (‘a mlist ref)

let rec mlength(m:’a mlist) : int =

match m with

| Nil -> 0 

| Cons(h,t) -> 1 + mlength(!t)

let r = ref Nil in

let m = Cons(3,r) in

r := m ;

mlength m   

m
r

3



Fraught with Peril
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type ‘a mlist = 

Nil | Cons of ‘a * (‘a mlist ref)

let rec mlength(m:’a mlist) : int =

match m with

| Nil -> 0 

| Cons(h,t) -> 1 + mlength(!t)

let r = ref Nil in

let m = Cons(3,r) in

r := m ;

mlength m  

m
r

3



Fraught with Peril
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type ‘a mlist = 

Nil | Cons of ‘a * (‘a mlist ref)

let rec mlength(m:’a mlist) : int =

match m with

| Nil -> 0 

| Cons(h,t) -> 1 + mlength(!t)

let r = ref Nil in

let m = Cons(3,r) in

r := m ;

mlength m  

m
r

3

Can’t use induction!  No base case!



Add mutability judiciously

Two types:

The first makes cyclic lists possible, the second doesn't

– the second preemptively avoids certain kinds of errors.

– often called a correct-by-construction design

type ‘a very_mutable_list = 

Nil 

| Cons of ‘a * (‘a very_mutable_list ref)

type ‘a less_mutable_list = ‘a list ref

41

type ‘a extremely_mutable_list = 

Nil 

| Cons of ‘a ref * (‘a very_mutable_list ref)



MUTABLE RECORDS AND ARRAYS



Records with Mutable Fields
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OCaml records with mutable fields:

In fact:       type 'a ref = {mutable contents : 'a} 

type 'a queue1 = 

{front : 'a list ref; 

back  : 'a list ref } 



Records with Mutable Fields
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OCaml records with mutable fields:

In fact:       type 'a ref = {mutable contents : 'a} 

type 'a queue1 = 

{front : 'a list ref; 

back  : 'a list ref } 

type 'a queue2 = 

{mutable front : 'a list; 

mutable back : 'a list} 

let q1 = {front = [1]; back = [2]} in

let q2 = {front = [1]; back = [2]} in

let x = q2.front @ q2.back in

q2.front <- [3]



Mutable Arrays
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For arrays, we have:

A.(i)

• to read the ith element of the array A

A.(i) <- 42 

• to write the ith element of the array A

Array.make : int -> ‘a -> ‘a array

• Array.make 42 ‘x’ creates an array of length 42 with all 
elements initialized to the character ‘x’.

See the reference manual for more operations.

www.caml.inria.fr/pub/docs/manual-ocaml/libref/Array.html



Is it possible to avoid all state?
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Yes! (in single-threaded programs)

– Pass in old values to functions; return new values from functions ... 
but this isn't necessarily the most efficient thing to do



Example: Depth-First Search
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A “graph” is a mapping from node-number to list-of-node-number.

“Mark each node” using a mapping from node-number to bool.

Implement these mappings as “dictionaries”, 

implemented by 2-3 trees:

module type DICT = 
sig
type 'a dict
val empty : 'a -> 'a dict
val lookup : 'a dict -> int -> 'a
val insert : 'a dict -> int -> 'a -> 'a dict

end

module Dict : DICT =
struct . . .  end

default value



Example: Depth-First Search
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Pass the “marks dictionary” around from function-call to function-call:

type node = int
type graph = node list dict

let rec dfs (g: graph) (marks: bool dict) (n: int) : bool dict =
if lookup marks n
then marks
else List.fold_left (dfs g) (insert marks n true) (lookup g n)

let rec dfs (g: graph) (marks: bool dict) (n: int) : bool dict =
if lookup marks n
then marks
else let rec f m es =

match es with
| [] -> m

| e::es' -> let m' = dfs g m e
in f m' es'

in f marks (lookup g n)

Or, if that fold_left is too concise for you,

Warning:
I haven’t 
tested 

this code!



Asymptotic time complexity

This implementation of DFS runs in O(N log N) time.

But you know that DFS is a linear-time algorithm.

Extra cost comes from logN cost for dictionary lookup and insert,

whereas  array subscript takes constant time.

You can implement this in ML with mutable arrays, 

(pretty much like you’d do it in C or Java)

and it will be linear time,   O(N).



This is a terrific
way to use

references in ML.  
Look for these 
opportunities

Fully encapsulated state
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We can’t always tell from the type 
that there are side-effects going 
on.  It’s a good idea to document 

them explicitly if the user can 
perceive them.

Sometimes, one uses 
references inside a 

module but the data 
structures have 

functional (persistent) 
semantics



Factoring!

let factor n =

let s = int_of_float (sqrt (float_of_int n)) in

let rec f i =

if i<=s then

if n mod i = 0 then 

Some i

else

f (i+1)

else

None

in f 2



Factoring!

let factor n =

let s = int_of_float (sqrt (float_of_int n)) in

let rec f i =

if i<=s then

if n mod i = 0 then 

Some i

else

f (i+1)

else

None

in f 2

factor 77 = Some 7

factor 97 = None



Caveats

let factor n =

let s = int_of_float (sqrt (float_of_int n)) in

let rec f i =

if i<=s then

if n mod i = 0 then 

Some i

else

f (i+1)

else

None

in f 2

Caveat 1:
Many applications of 

prime numbers
are for many-bit (500-

bit, 2000-bit) numbers; 
OCaml ints are 31-bit or 
63-bit, so you’d want a 
version of this for the 

bignums

Caveat 2:
This primitive factoring 

algorithm, already 
obsolete 2000 years ago,
is not what you’d really 

use.  Modern algorithms 
based on fancy number 
theory are much faster.

Caveat 3:
Even the fancy 

number-theory algs
take 

superpolynomial
time (as function of 
the number of bits

in n) 



Memoized factoring

let table = Hashtbl.create 1000

let memofactor n =

try Hashtbl.find table n

with Not_found ->

let p = factor n

in Hashtbl.add table n p; p

memofactor 77 = Some 7

memofactor 97 = None



Encapsulating the side effects

The table is hidden inside the function closure. 

There's no way for the client to access it, or know it’s there.

We can pretend memofactor is a pure function.

struct

let table = Hashtbl.create 1000

let memofactor n =

try Hashtbl.find table n

with Not_found ->

let p = factor n

in Hashtbl.add table n p; p

let factor n = memofactor n

end

sig

val factor : int -> int

end



OCaml Objects

Xavier Leroy (OCaml inventor): 

• No one ever uses objects in OCaml!

• Adding objects to OCaml was one of the best decisions I ever made!

http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual005.html

class point = 

object

val mutable x = 0 

method get_x = x 

method move d = x <- x + d 

end;;

let p = new point in

let x = p#get in

p#move 4;

x + p#get (* 0 + 4 *)

http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual005.html


SUMMARY



Summary:  How/when to use state?
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• A complicated question!

• In general, I try to write the functional version first.
– e.g., prototype

– don’t have to worry about sharing and updates

– don’t have to worry about race conditions

– reasoning is easy (the substitution model is valid!)

• Sometimes you find you can’t afford it for efficiency reasons.
– example:  routing tables need to be fast in a switch

– constant time lookup, update (hash-table)

• When I do use state, I try to encapsulate it behind an interface.
– try to reduce the number of error conditions a client can see

• correct-by-construction design

– module implementer must think explicitly about sharing and invariants

– write these down, write assertions to test them

– if encapsulated in a module, these tests can be localized

– most of your code should still be functional



Summary
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Mutable data structures can lead to efficiency improvements.
– e.g., Hash tables, memoization, depth-first search

But they are much harder to get right, so don't jump the gun
– updating in one place may have an effect on other places.

– writing and enforcing invariants becomes more important.
• e.g., assertions we used in the queue example

• why more important?  because the types do less ...

– cycles in data (other than functions) can't happen until we 
introduce refs.
• must write operations much more carefully to avoid looping

• more cases to deal with and the compiler doesn’t help you!

– we haven’t even gotten to the multi-threaded part.

So use refs when you must, but try hard to avoid it.


