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WHAT CAN’T WE COMPUTE?



Some meta-notation
type var = int
type exp = Fun of var*exp | Var of var | App of exp*exp

We want to talk about the AST of a given term:
When   e  is a λ-expression,    ⌈e⌉	is	its	representation	in	exp

⌈xi⌉				=	Var i
⌈e1	e2⌉				=	App ⌈e1⌉	⌈e2⌉	
⌈λ xi	.	e1⌉				=	Fun i ⌈e1⌉	



Datatype representaAon
type var = int
type exp = Fun of var*exp | Var of var | App of exp*exp

This data type can also be expressed in pure λ-calculus:

Fun = λvλe λabc.ave
Var = λv λabc.bv
App = λe1e2 λabc.ce1e2



What can we compute?
type var = int
type exp = Fun of var*exp | Var of var | App of exp*exp

1. Write a λ-function interp such that

For any expression e 
that evaluates in λ-calculus to a normal form e’, 

(that is,   e -->* e’    and e’ cannot take a step)

interp ⌈e⌉	-->* ⌈e’⌉

(Yes, this is just a version of the substitution-based interpreter 
from lecture 6, and homework 4)



What will interp do on infinite loops?
Suppose   e never gets to a normal form, that is,
e --> e’ --> e’’ --> e’’ … forever

Then 
interp ⌈e⌉	--> … --> … --> … --> … --> … --> … 

interp ⌈e⌉			 also does not have a normal form, 

that is,

also infinite loops.



What can we compute?
type var = int
type exp = Fun of var*exp | Var of var | App of exp*exp

2. Write a quoting function such that   kwoht e=	⌈e⌉

Impossible:

Consider e1 = (λx.x)y    and   e2=y
kwoht e1 = kwoht ((λx.x)y) = kwoht y = kwoht e2
⌈e1⌉	=	App(Fun(i,Var i),Var j)
⌈e2⌉	=	Var j
⌈e1⌉≠⌈e2⌉



What can we compute?
type var = int
type exp = Fun of var*exp | Var of var | App of exp*exp

3. Write a quoting function such that   quote ⌈e⌉	=	⌈⌈e⌉⌉

Easy:

let rec quote e = 
match e with
| Fun(i,e1) -> App (App Fun i) (quote e1)
| Var i ->  App Var i
| App(e1,e2) -> App (App App (quote e1)) (quote e2)



What can we compute?
type var = int
type exp = Fun of var*exp | Var of var | App of exp*exp

4.  Write a λ-function halts such that

For any expression e, 
if   e -->* e’   and e’ cannot step, then  halts ⌈e⌉	= true
if  e infinite loops no matter which reductions you do,

then halts ⌈e⌉	= false

Claim:  you cannot write such a function



What can we compute?
Proof by contradiction.  Suppose there exists a λ-expression halts
such that for any expression e, 
if   e -->* e’   and e’ cannot step, then  halts ⌈e⌉	= true
if  e infinite loops no matter which reductions you do,

then halts ⌈e⌉	= false

Then we can write the λ-expression
f = λx.  if  halts (App x (quote x))  then Ω else true

Now, either      f ⌈f⌉	 halts, or it doesn’t.
f ⌈f⌉	=		if  halts (App ⌈f⌉ (quote ⌈f⌉	))  then Ω else true



What can we compute?
Suppose: For any expression e, 
if   e -->* e’   and e’ cannot step, then  halts ⌈e⌉	= true
if  e infinite loops no maAer which reducCons you do,  then halts ⌈e⌉	= false

Write a quoCng funcCon such that   quote ⌈e⌉	=	⌈⌈e⌉⌉
f = λx.  if  halts (App x (quote x))  then Ω else true

f ⌈f⌉	=		if  halts (App ⌈f⌉ (quote ⌈f⌉	))  then Ω else true
App ⌈f⌉ (quote ⌈f⌉	)    =    quote  (f ⌈f⌉)		=	⌈ f ⌈f⌉	⌉

If   f ⌈f⌉	 halts,  then  f ⌈f⌉	 doesn’t halt.
If  f ⌈f⌉ doesn’t  halt, then  f ⌈f⌉ halts.

But we only made one hypothe=cal assump=on so far:  that is,
one can implement a “halts” func=on.   That leads to a contradic=on.
So therefore, the “halts” func=on cannot be implemented.



Models of computation
• Herbrand-Gödel recursive func]ons (1935)

developed by Kleene from ideas by Herbrand and Gödel
• λ-calculus (1935)

developed by Church with his students Rosser & Kleene
• Turing machine (1936)

developed by Turing



Models of computation

Theorem (1936, Turing, ): There’s a mathematical function not imple-
mentable in Turing machines  (the “halts” function). (Dang!  Church published first!)

Theorem (1935, Kleene): any function you can implement in H-G recursive 
functions, you can implement in λ-calculus. 
Proof:  previous slides—all those data structures, numbers, recursion, etc.

Theorem (1935, Kleene): any function you can implement in λ-calculus, 
you can functions, you can implement in H-G recursive functions. 

Theorem (1936, Church): There’s a mathematical function not
implementable in λ-calculus  (the “halts” function). 

Theorem (1936, Turing): any func=on you can implement in λ-calculus, you 
can implement in Turing machines.
Proof:  Turing machine can simulate the subs=tu=on-based interpreter.

Theorem (1936, Turing): any function you can implement in Turing 
machines, you can implement in λ-calculus.
Proof:  Program Turing-machine simulator in λ-calculus.



Models of computaAon

Theorem (1936, Turing): any function you can implement in λ-calculus, you 
can implement in Turing machines.
Proof:  Turing machine can simulate the substitution-based interpreter.

Do you believe this proof?
You’ve seen the substitution-based interpreter in Ocaml; 
could that be programmed to run on a von Neumann machine?

(There’s strong evidence for “yes”, it’s called “ocamlc.opt”, the compiler)

(but a von Neumann machine is not a Turing machine, one has to
simulate a von Neumann machine on a Turing machine – not difficult.



Models of computation

Theorem (1936, Turing): any function you can implement in Turing 
machines, you can implement in λ-calculus.
Proof:  Program Turing-machine simulator in λ-calculus.

Do you believe this proof?
Could you write a pure functional Ocaml program that simulates a Turing 
machine? 

(Of course you could!)



Conclusion 1
All these models of computation can simulate each other, thus 
they have equivalent power to express mathematical functions.

(Some of these models “run faster” than others.)

They can express functions not imagined by Church, Godel, etc: 
for example, the Amazon app on your Samsung smartphone 
running Google’s operating system that’s an open-source 
derivative of Linux . . .



Conclusion 1
All these models of computation can simulate each other, thus 
they have equivalent power to express mathematical functions.

(Some of these models “run faster” than others.)

They can express functions not imagined by Church, Godel, etc: 
for example, the Amazon app on your Samsung smartphone 
running Google’s operating system that’s an open-source 
derivative of Linux . . .

. . . but in 1950, Turing imagined computers of the year 2000 
with billions of bits of memory, that could conduct intelligent-
seeming computations.



Conclusion 2
All these models of computation can simulate each other, thus 
they have equivalent power to express mathematical functions.

But some functions are not “computable” by any of these 
models:  in particular,
• For any program P, does P halt?  (yes or no)
• For any program P, does P compute the right answer?
• For any program P, what’s the fastest (most optimized) 

machine-language program that implements it?



Caveat
Not computable:
• For any program P, does P halt?  (yes or no)
• For any program P, does P compute the right answer?
• For any program P, what’s the fastest (most optimized) 

machine-language program that implements it?



Caveat
Not computable:
• For any program P, does P halt?  (yes or no)
• For any program P, does P compute the right answer?
• For any program P, what’s the fastest (most optimized) 

machine-language program that implements it?

Computable:
• Does this program halt?      let f(i)=if i=0 then 1 else 2
• Does this program halt?      let rec f(i) = f(i+1)
• Does this program compute a+b ?

let rec g(a,b) = if a>0 then g(a-1,b+1) 
else if a<0 then g(a+1,b-1)
else b


