Did I Get it Right?
Part 4: Induction for Datatypes

Speaker: David Walker
COS 326
Princeton University

http://~cos326/notes/reasoning-data.php
Equational Reasoning: Some Key Ideas

What is the fundamental definition of expression equality \((e_1 == e_2)\)?

- two expressions are equal if:
 - they evaluate to equal values, or
 - they both raise the same exception
 - they both fail to terminate
- note: we won’t ask you to do proofs about expressions that don't terminate, use I/O or mutable data structures

What are some consequences of this definition?

- expression equality is reflexive, symmetric and transitive
- if \(e_1 \rightarrow e_2\) then \(e_1 == e_2\)
- if \(e_1 == e_2\) then \(e[e_1/x] == e[e_2/x]\). (substitution of equals for equals)

How do we prove things about recursive functions?

- we use proofs by induction
- to reason about recursive calls on smaller data, we assume the property we are trying to prove (i.e., we use the induction hypothesis)
More General Template for Inductive Datatypes

\[
\text{type } t = \text{C1 of } t_1 \mid \text{C2 of } t_2 \mid \ldots \mid \text{Cn of } t_n
\]

Types \(t_1, t_2 \ldots t_n \), may contain 1 or more occurrences of \(t \) within them.

Examples:

- \(\text{type mylist = MyNil} \mid \text{MyCons of int * mylist} \)
- \(\text{type 'a tree = Leaf} \mid \text{Node of 'a * 'a tree * 'a tree} \)
More General Template for Inductive Datatypes

Theorem: For all x : t, property(x).

Proof: By induction on structure of values x with type t.
More General Template for Inductive Datatypes

Theorem: For all $x : t$, property(x).

Proof: By induction on structure of values x with type t.

Case: $x == C1 v$:

... use IH on components of v that have type t ...

Case: $x == C2 v$:

... use IH on components of v that have type t ...

Case: $x == Cn v$:

... use IH on components of v that have type t ...
A PROOF ABOUT TREES
type 'a tree = Leaf | Node of 'a * 'a tree * 'a tree

let rec tm f t =
 match t with
 | Leaf -> Leaf
 | Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<> f g =
 fun x -> f (g x)
Another example

```ocaml
type 'a tree = Leaf | Node of 'a * 'a tree * 'a tree

let rec tm f t =
  match t with
    | Leaf -> Leaf
    | Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g =
  fun x -> f (g x)
```

Theorem:
For all (total) functions \(f : b \rightarrow c \),
For all (total) functions \(g : a \rightarrow b \),
For all trees \(t : a \text{ tree} \),
\(\text{tm } f \ (\text{tm } g \ t) = \text{tm } (f <> g) \ t \)
Theorem:
For all (total) functions \(f : b \rightarrow c \),
For all (total) functions \(g : a \rightarrow b \),
For all trees \(t : a \) tree,
\(\text{tm} \ f \ (\text{tm} \ g \ t) = \text{tm} \ (f <> g) \ t \)

```
let rec tm f t =
  match t with
  | Leaf -> Leaf
  | Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g =
  fun x -> f (g x)
```

To begin, let’s *pick an arbitrary total function \(f \) and total function \(g \).*
We’ll prove the theorem without assuming any particular properties of \(f \) or \(g \) (other than the fact that the types match up). So, for the \(f \) and \(g \) we picked, we’ll prove:

Theorem:
For all trees \(t : a \) tree,
\(\text{tm} \ f \ (\text{tm} \ g \ t) = \text{tm} \ (f <> g) \ t \)
Theorem:
For all trees \(t \) : a tree,
\(\text{tm } f \ (\text{tm } g \ t) == \text{tm } (f <> g) \ t \)

```ocaml
let rec tm f t = 
  match t with 
  | Leaf -> Leaf 
  | Node (x, l, r) -> Node (f x, tm f l, tm f r) 

let (<> f g = 
  fun x -> f (g x)
```
Another example

Theorem:
For all trees $t : \text{ a tree,}$
$tm\ f\ (tm\ g\ t) == tm\ (f\ <>\ g)\ t$

Case: $t = \text{ Leaf}$

No inductive hypothesis to use.
(Leaf doesn’t contain any smaller components with type tree.)

Proof:
$tm\ f\ (tm\ g\ \text{Leaf})$

let rec tm f t =
 match t with
 | Leaf -> Leaf
 | Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g =
 fun x -> f (g x)
Another example

Theorem:
For all trees \(t : \text{a tree} \),
\[
\text{tm } f \ (\text{tm } g \ t) = \text{tm } (f <> g) \ t
\]

Case: \(t = \text{Leaf} \)

No inductive hypothesis to use.
(Leaf doesn’t contain any smaller components with type tree.)

Proof:
\[
\text{tm } f \ (\text{tm } g \ \text{Leaf}) \\
== \text{tm } f \ \text{Leaf} \quad \text{(eval } \text{tm } g \ \text{Leaf}) \\
== \text{Leaf} \quad \text{(eval } \text{tm } f \ \text{Leaf}) \\
== \text{tm } (f <> g) \ \text{Leaf} \quad \text{(reverse eval)}
\]

let rec tm f t =
match t with
| Leaf -> Leaf
| Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g =
fun x -> f (g x)
Another example

Theorem:
For all trees t : a tree,
tm f (tm g t) == tm (f <> g) t

Case: t = Node(v, l, r)

IH1: tm f (tm g l) == tm (f <> g) l
IH2: tm f (tm g r) == tm (f <> g) r

let rec tm f t =
match t with
 | Leaf -> Leaf
 | Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g =
 fun x -> f (g x)
Another example

Theorem:
For all trees $t : a$ tree,
$t \mapsto f \cdot tm \cdot g \cdot t = tm \cdot (f \cdot <> \cdot g) \cdot t$

Case: $t = \text{Node}(v, l, r)$

IH1: $tm \cdot f \cdot (tm \cdot g \cdot l) == tm \cdot (f \cdot <> \cdot g) \cdot l$

IH2: $tm \cdot f \cdot (tm \cdot g \cdot r) == tm \cdot (f \cdot <> \cdot g) \cdot r$

Proof:
$tm \cdot f \cdot (tm \cdot g \cdot (\text{Node} \: (v, l, r)))$

$== tm \cdot (f \cdot <> \cdot g) \cdot (\text{Node} \: (v, l, r))$

let rec $tm \; f \; t =$
 match t with
 | Leaf -> Leaf
 | $\text{Node} \: (x, l, r)$ -> $\text{Node} \: (f \; x, \; tm \; f \; l, \; tm \; f \; r)$

let $(<>)$ $f \; g =$
 fun x -> $f \; (g \; x)$
Another example

Theorem:
For all trees \(t : \) a tree,
\[
\text{tm } f \ (\text{tm } g \ t) = \text{tm } (f \ <> \ g) \ t
\]

Case: \(t = \text{Node}(v, l, r) \)

IH1: \(\text{tm } f \ (\text{tm } g \ l) = \text{tm } (f \ <> \ g) \ l \)
IH2: \(\text{tm } f \ (\text{tm } g \ r) = \text{tm } (f \ <> \ g) \ r \)

Proof:
\[
\text{tm } f \ (\text{tm } g \ (\text{Node}(v, l, r)))
\]
\[
= \text{tm } f \ (\text{Node}(g \ v, \text{tm } g \ l, \text{tm } g \ r))
\]
\[
= \text{tm } (f \ <> \ g) \ (\text{Node}(v, l, r))
\]
Another example

Theorem:
For all trees $t : \text{a tree},$
$\text{tm } f (\text{tm } g \ t) == \text{tm } (f <> g) \ t$

Case: $t = \text{Node}(v, l, r)$

IH1: $\text{tm } f (\text{tm } g \ l) == \text{tm } (f <> g) \ l$
IH2: $\text{tm } f (\text{tm } g \ r) == \text{tm } (f <> g) \ r$

Proof:
$\text{tm } f (\text{tm } g \ (\text{Node } (v, l, r)))$
$== \text{tm } f (\text{Node } (g \ v, \text{tm } g \ l, \text{tm } g \ r))$ \hspace{2cm} (eval inner tm)

$\text{Node } ((f <> g) \ v, \text{tm } (f <> g) \ l, \text{tm } (f <> g) \ r)$
$== \text{tm } (f <> g) \ (\text{Node } (v, l, r))$ \hspace{2cm} (eval reverse)

let rec tm f t =
match t with
 | Leaf -> Leaf
 | Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g =
fun x -> f (g x)
Another example

Theorem:
For all trees $t : \text{a tree}$,
$\text{tm} \ f \ (\text{tm} \ g \ t) = \text{tm} \ (f <> g) \ t$

Case: $t = \text{Node}(v, l, r)$

IH1: $\text{tm} \ f \ (\text{tm} \ g \ l) = \text{tm} \ (f <> g) \ l$
IH2: $\text{tm} \ f \ (\text{tm} \ g \ r) = \text{tm} \ (f <> g) \ r$

Proof:

$\text{tm} \ f \ (\text{tm} \ g \ (\text{Node} \ (v, l, r)))$
$= \text{tm} \ f \ (\text{Node} \ (g \ v, \text{tm} \ g \ l, \text{tm} \ g \ r))$
$= \text{Node} \ (f \ (g \ v), \text{tm} \ f \ (\text{tm} \ g \ l), \text{tm} \ f \ (\text{tm} \ g \ r))$

(eval inner tm)
(eval – since g, tm are total)

$\text{Node} \ ((f <> g) \ v, \text{tm} \ (f <> g) \ l, \text{tm} \ (f <> g) \ r)$
$= \text{tm} \ (f <> g) \ (\text{Node} \ (v, l, r))$

(eval reverse)

let rec tm f t =
match t with
| Leaf -> Leaf
| Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<> f g =
 fun x -> f (g x)
Another example

orem:
For all trees \(t : \) a tree,
\[\text{tm} \ f \ (\text{tm} \ g \ t) \ == \ \text{tm} \ (f <> g) \ t \]

Case: \(t = \text{Node}(v, l, r) \)

IH1: \(\text{tm} \ f \ (\text{tm} \ g \ l) \ == \ \text{tm} \ (f <> g) \ l \)
IH2: \(\text{tm} \ f \ (\text{tm} \ g \ r) \ == \ \text{tm} \ (f <> g) \ r \)

Proof:
\[
\begin{align*}
\text{tm} \ f \ (\text{tm} \ g \ (\text{Node} \ (v, l, r))) &
\quad == \quad \text{tm} \ f \ (\text{Node} \ (g \ v, \text{tm} \ g \ l, \text{tm} \ g \ r)) \\
&
\quad == \quad \text{Node} \ ((f <> g) \ v, \text{tm} \ (f <> g) \ l, \text{tm} \ (f <> g) \ r) \\
&
\quad == \quad tm \ (f <> g) \ (\text{Node} \ (v, l, r))
\end{align*}
\]

let rec tm f t =
 match t with
 | Leaf -> Leaf
 | Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<> f g =
 fun x -> f (g x)
Another example

Theorem:
For all trees t : a tree,
\(\text{tm } f \ (\text{tm } g \ t) \equiv \text{tm } (f <> g) \ t \)

Case: \(t = \text{Node}(v, l, r) \)

IH1: \(\text{tm } f \ (\text{tm } g \ l) \equiv \text{tm } (f <> g) \ l \)
IH2: \(\text{tm } f \ (\text{tm } g \ r) \equiv \text{tm } (f <> g) \ r \)

Proof:
\[
\begin{align*}
\text{tm } f \ (\text{tm } g \ (\text{Node} \ (v, l, r))) \\
\equiv \text{tm } f \ (\text{Node} \ (g \ v, \text{tm } g \ l, \text{tm } g \ r)) \\
\equiv \text{Node} \ ((f <> g) \ v, \text{tm } f \ (\text{tm } g \ l), \text{tm } f \ (\text{tm } g \ r)) \\
\equiv \text{Node} \ ((f <> g) \ v, \text{tm } (f <> g) \ l, \text{tm } f \ (\text{tm } g \ r)) \\
\equiv \text{Node} \ ((f <> g) \ v, \text{tm } (f <> g) \ l, \text{tm } (f <> g) \ r) \\
\equiv \text{tm } (f <> g) \ (\text{Node} \ (v, l, r))
\end{align*}
\]

(let rec tm f t =
 match t with
 | Leaf -> Leaf
 | Node (x, l, r) -> Node (f x, tm f l, tm f r)

let (<>) f g =
 fun x -> f (g x)
Theorem:
For all trees $t : a$ tree,
$tm\ f\ (tm\ g\ t) == tm\ (f\ <>\ g)\ t$

Case: $t = Node(v, l, r)$

IH1: $tm\ f\ (tm\ g\ l) == tm\ (f\ <>\ g)\ l$
IH2: $tm\ f\ (tm\ g\ r) == tm\ (f\ <>\ g)\ r$

Proof:
$tm\ f\ (tm\ g\ (Node\ (v, l, r)))$
$== tm\ f\ (Node\ (g\ v, tm\ g\ l, tm\ g\ r))\quad (eval\ inner\ tm)$
$== Node\ (f\ (g\ v),\ tm\ f\ (tm\ g\ l),\ tm\ f\ (tm\ g\ r))\quad (eval\ –\ since\ g,\ tm\ are\ total)$
$== Node\ ((f\ <>\ g)\ v,\ tm\ f\ (tm\ g\ l),\ tm\ f\ (tm\ g\ r))\quad (eval\ reverse)$
$== Node\ ((f\ <>\ g)\ v,\ tm\ (f\ <>\ g)\ l,\ tm\ (f\ <>\ g)\ r)\quad (IH1)$
$== Node\ ((f\ <>\ g)\ v,\ tm\ (f\ <>\ g)\ l,\ tm\ (f\ <>\ g)\ r)\quad (IH2)$
$== tm\ (f\ <>\ g)\ (Node\ (v, l, r))\quad (eval\ reverse)$
Proof Template for Trees

Theorem: For all \(x : \text{a tree} \), \(\text{property}(x) \).

Proof: By induction on the structure of trees \(x \).

Case: \(x == \text{Leaf} \):

... no use of inductive hypothesis (this is the smallest tree) ...

Case: \(x == \text{Node} (v, \text{left}, \text{right}) \):

IH1: \(\text{property}(`\text{left}) \)
IH2: \(\text{property}(\text{right}) \)

... use IH1 and IH 2 in your proof ...
Summary of Template for Inductive Datatypes

Theorem: For all \(x : t \), \(\text{property}(x) \).

Proof: By induction on structure of values \(x \) with type \(t \).

Case: \(x == \text{C1} \, v \):

... use \(\text{IH} \) on components of \(v \) that have type \(t \) ...

Case: \(x == \text{C2} \, v \):

... use \(\text{IH} \) on components of \(v \) that have type \(t \) ...

Case: \(x == \text{Cn} \, v \):

... use \(\text{IH} \) on components of \(v \) that have type \(t \) ...

use patterns that divide up the cases

Take inspiration from the structure of the program
Exercise

type 'a tree = Leaf of 'a | Node of 'a tree * 'a tree

let rec flip (t: 'a tree) =
match t with
| Leaf _ -> t
| Leaf _ -> t
| Node (a,b) -> Node (flip b, flip a)

Theorem: for all t: 'a tree, flip(flip t) = t.

Theorem: for all t: 'a tree, flip(flip (flip t)) = flip t.