
A Mathematical Model
of OCaml

Speaker: David Walker
COS 326

Princeton University

slides copyright 2020 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

1

From Code to Abstract Specification

OCaml code can give a language semantics
– advantage: it can be executed, so we can try it out
– advantage: it is amazingly concise

• especially compared to what you would have written in Java
– disadvantage: it is a little ugly to operate over concrete ML datatypes

like “Op(e1,Plus,e2)” as opposed to “e1 + e2”

2

From Code to Abstract Specification

PL has a notation for these specifications:

– it has a mathematical “feel” that makes PL researchers feel special
and gives us goosebumps inside

– it operates over abstract expression syntax like “e1 + e2”

– it is useful to know this notation if you want to read specifications of
programming language semantics
• e.g.: Standard ML (of which OCaml is a descendent) has a formal

definition given in this notation (and C, and Java; but not OCaml…)
• e.g.: most papers in the conference POPL (ACM Principles of Prog. Lang.)

3

Goal

Our goal is to explain how an expression e evaluates to a value v.

Ie, we will define a relation between expressions and values.

4

Formal Inference Rules
We will define the “evaluates to” relation using a set of (inductive)
rules that allow us to prove that a particular (expression, value) pair
is part of the relation.

A rule looks like this:

You read a rule like this:
– “if premise 1 can be proven and premise 2 can be proven and ...

and premise n can be proven then conclusion can be proven”

Some rules have no premises
– this means their conclusions are always true
– we call such rules “axioms” or “base cases”

premise 1 premise 2 ... premise 3
conclusion

5

An example rule

e1 --> v1 e2 --> v2 eval_op (v1, op, v2) == v’
e1 op e2 --> v’

let rec eval (e:exp) : exp =
match e with
| Op_e(e1,op,e2) -> let v1 = eval e1 in

let v2 = eval e2 in
let v’ = eval_op v1 op v2 in
v’

“If e1 evaluates to v1
and e2 evaluates to v2
and eval_op (v1, op, v2) is equal to v’
then
e1 op e2 evaluates to v’

As a rule:

In English:

In code:

6

An example rule

i ϵ Z
i --> i

let rec eval (e:exp) : exp =
match e with
| Int_e i -> Int_e i
...

“If the expression is an integer value, it evaluates to itself.”

As a rule:

In English:

In code:

asserts i is
an integer

7

An example rule concerning evaluation

e1 --> v1 e2 [v1/x] --> v2
let x = e1 in e2 --> v2

let rec eval (e:exp) : exp =
match e with
| Let_e(x,e1,e2) -> let v1 = eval e1 in

eval (substitute v1 x e2)
...

“If e1 evaluates to v1 (which is a value)
and e2 with v1 substituted for x evaluates to v2
then let x=e1 in e2 evaluates to v2.”

As a rule:

In English:

In code:

8

An example rule concerning evaluation

λx.e --> λx.e

let rec eval (e:exp) : exp =
match e with
...
| Fun_e (x,e) -> Fun_e (x,e)
...

“A function value evaluates to itself.”

As a rule:

In English:

In code:

typical “lambda” notation
for a function with
argument x, body e

9

An example rule concerning evaluation

e1 --> λx.e e2 --> v2 e[v2/x] --> v
e1 e2 --> v

let rec eval (e:exp) : exp =
match e with
..
| Call_e (e1,e2) ->

(match eval e1 with
| Fun_e (x,e) -> eval (substitute (eval e2) x e)
| ...)

...

“if e1 evaluates to a function with argument x and body e
and e2 evaluates to a value v2
and e with v2 substituted for x evaluates to v
then e1 applied to e2 evaluates to v”

As a rule:

In English:

In code:

10

An example rule concerning evaluation

e1--> rec f x = e e2 --> v e[rec f x = e/f][v/x] --> v2
e1 e2 --> v2

let rec eval (e:exp) : exp =
match e with

...
| (Rec_e (f,x,e)) as f_val ->

let v = eval e2 in
substitute f_val (substitute v x e) g

“uggh”

As a rule:

In English:

In code:

11

Comparison: Code vs. Rules

Almost isomorphic:
– one rule per pattern-matching clause
– recursive call to eval whenever there is a --> premise in a rule
– what’s the main difference?

let rec eval (e:exp) : exp =
match e with
| Int_e i -> Int_e i

| Op_e(e1,op,e2) -> eval_op (eval e1) op (eval e2)
| Let_e(x,e1,e2) -> eval (substitute (eval e1) x e2)
| Var_e x -> raise (UnboundVariable x)

| Fun_e (x,e) -> Fun_e (x,e)
| FunCall_e (e1,e2) ->

(match eval e1
| Fun_e (x,e) -> eval (Let_e (x,e2,e))

| _ -> raise TypeError)
| LetRec_e (x,e1,e2) ->

(Rec_e (f,x,e)) as f_val ->

let v = eval e2 in
substitute f_val f (substitute v x e) e1 --> rec f x = e e2 --> v2 e[rec f x = e/f][v2/x] --> v3

e1 e2 --> v3

e1 --> v1 e2 --> v2 eval_op (v1, op, v2) == v
e1 op e2 --> v

i ϵ Z
i --> i

e1 --> v1 e2 [v1/x] --> v2
let x = e1 in e2 --> v2

λx.e --> λx.e

e1 --> λx.e e2 --> v2 e[v2/x] --> v
e1 e2 --> v

complete eval code: complete set of rules:

12

Comparison: Code vs. Rules

• There’s no formal rule for handling free variables
• No rule for evaluating function calls when a non-function in the caller position
• In general, no rule when further evaluation is impossible

– the rules express the legal evaluations and say nothing about what to do in error situations
– the code handles the error situations by raising exceptions
– type theorists prove that well-typed programs don’t run into undefined cases

e1 --> v1 e2 --> v2 eval_op (v1, op, v2) == v
e1 op e2 --> v

i ϵ Z
i --> i

e1 --> v1 e2 [v1/x] --> v2
let x = e1 in e2 --> v2

λx.e --> λx.e

e1 --> λx.e e2 --> v2 e[v2/x] --> v
e1 e2 --> v

complete eval code: complete set of rules:

e1 --> rec f x = e e2 --> v2 e[rec f x = e/f][v2/x] --> v3
e1 e2 --> v3

let rec eval (e:exp) : exp =
match e with
| Int_e i -> Int_e i

| Op_e(e1,op,e2) -> eval_op (eval e1) op (eval e2)
| Let_e(x,e1,e2) -> eval (substitute (eval e1) x e2)
| Var_e x -> raise (UnboundVariable x)

| Fun_e (x,e) -> Fun_e (x,e)
| FunCall_e (e1,e2) ->

(match eval e1
| Fun_e (x,e) -> eval (Let_e (x,e2,e))

| _ -> raise TypeError)
| LetRec_e (x,e1,e2) ->

(Rec_e (f,x,e)) as f_val ->

let v = eval e2 in
substitute f_val f (substitute v x e)

13

This Lecture's Model of Computation 14

This lecture's model of computation is often called the substitution model

It models pure programming features succinctly, but non-trivial changes
are required to model more sophisticated constructs:

• I/O, exceptions, mutation, concurrency, …
• we can build models of these things, but they aren’t as simple.
• ... even modelling substitution was somewhat tricky

It’s useful for reasoning about correctness of algorithms and optimizations
– we can use it to formally prove that, for instance:

• map f (map g xs) == map (comp f g) xs
• proof: by induction on the length of the list xs, using the definitions of the

substitution model

It is not useful for reasoning about execution time or space
– more complex models needed there

This Lecture's Model of Computation 15

This model of computation is often called the substitution model

It models pure programming features succinctly, but non-trivial changes
are required to model more sophisticated constructs:

• I/O, exceptions, mutation, concurrency, …
• we can build models of these things, but they aren’t as simple
• ... even modelling substitution was somewhat tricky

It’s useful for reasoning about correctness of algorithms and optimizations
– we can use it to formally prove that, for instance:

• map f (map g xs) == map (comp f g) xs
• proof: by induction on the length of the list xs, using the definitions of the

substitution model

It is not useful for reasoning about execution time or space
– more complex models needed there

Alonzo Church,
1903-1995

Princeton Professor,
1929-1967

You can say that again!
I got it wrong the first
time I tried, in 1932.

Fixed the bug by 1934,
though.

Church's mistake 16

fun xs -> map (+) xs

fun ys ->
let map xs = 0::xs in
f (map ys)

substitute:

for f in:

and if you don't watch out, you will get:

fun ys ->
let map xs = 0::xs in
(fun xs -> map (+) xs) (map ys)

map is free here –
it refers to a

library function

the problem was that the
value you substituted in

had a free variable (map)
in it that was

captured.

Church's mistake 17

fun xs -> map (+) xs

fun ys ->
let map xs = 0::xs in
f (map ys)

substitute:

for f in:

to do it right, you need to rename some variables:

fun ys ->
let z xs = 0::xs in
(fun xs -> map (+) xs) (z ys)

change "map" to
"z" before

substituting

Recap 18

In this lecture, we explored a mathematical specification of OCaml expressions

– we specified the evaluation model using a set of inference rules

– these inference rules defined a relation between expressions and values

– we found that values evaluated to themselves
• values are the results of evaluation
• integer constants and functions both count as values in this model of execution

– and we found that substitution is used to handle constructs that involve
variable binding
• let expressions: “let x = e1 in e2” -- substitute e1’s value for x in e2
• function application: “(fun x -> e2) e1” -- substitute e1’s value for x in e2
• recursive function application: “(rec f x = e1) e2” -- like non-recursive functions,

but also substitute recursive function for name of function

– more on this in COS 510

Exercise
Try extending the language and rules for evaluation with:
• booleans (true, false, and, or, not, if)
• pairs (with pair creation and field extraction operations)

19

