
Poly-HO!

polymorphic,
higher-order
programming

COS 326
Speaker: Andrew Appel

Princeton University

slides copyright 2017 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes



Some Design & Coding Rules

2

• Save some software-engineering effort:  
Never write the same code twice.

“Ooh, I get it!  I’ll write the code once, copy-paste it somewhere 
else . . . that way, I didn’t write the same code twice”
– What’s wrong with that?

• Instead, a better practice:
– factor out the common bits into a reusable procedure.
– even better: use someone else’s (well-tested, well-documented, 

and well-maintained) procedure.

• find and fix a bug in one copy, have to fix in all of them.
• decide to change the functionality, have to track down all of the 

places where it gets used.   



Factoring Code in OCaml
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Consider these definitions:

let rec inc_all (xs:int list) : int list = 
match xs with 
| [] -> []
| hd::tl -> (hd+1)::(inc_all tl)

let rec square_all (xs:int list) : int list =
match xs with
| [] -> []
| hd::tl -> (hd*hd)::(square_all tl)



Factoring Code in OCaml

4

Consider these definitions:

The code is almost identical – factor it out!

let rec inc_all (xs:int list) : int list = 
match xs with 
| [] -> []
| hd::tl -> (hd+1)::(inc_all tl)

let rec square_all (xs:int list) : int list =
match xs with
| [] -> []
| hd::tl -> (hd*hd)::(square_all tl)



Factoring Code in OCaml
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A higher-order function captures the recursion pattern:

let rec map (f:int->int) (xs:int list) : int list = 
match xs with 
| [] -> []
| hd::tl -> (f hd)::(map f tl)



Factoring Code in OCaml
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A higher-order function captures the recursion pattern:

Uses of the function:

let rec map (f:int->int) (xs:int list) : int list = 
match xs with 
| [] -> []
| hd::tl -> (f hd)::(map f tl)

let inc x = x+1
let inc_all xs = map inc xs



Factoring Code in OCaml
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A higher-order function captures the recursion pattern:

Uses of the function:

let rec map (f:int->int) (xs:int list) : int list = 
match xs with 
| [] -> []
| hd::tl -> (f hd)::(map f tl)

let inc x = x+1
let inc_all xs = map inc xs

let square y = y*y
let square_all xs = map square xs

Writing little 
functions like inc

just so we call 
map is a pain.



Factoring Code in OCaml
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A higher-order function captures the recursion pattern:

Uses of the function:

let rec map (f:int->int) (xs:int list) : int list = 
match xs with 
| [] -> []
| hd::tl -> (f hd)::(map f tl);;

let inc_all xs = map (fun x -> x + 1) xs

let square_all xs = map (fun y -> y * y) xs

We can use an 
anonymous 

function instead.
Originally, Alonzo 
Church wrote this 

function using      
l instead of fun:

(lx.  x+1) or 
(lx. x*x)



Another example
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let rec sum (xs:int list) : int = 
match xs with 
| [] -> 0
| hd::tl -> hd + (sum tl)

let rec prod (xs:int list) : int = 
match xs with 
| [] -> 1
| hd::tl -> hd * (prod tl)

Goal:  Create a function called reduce that
when supplied with a few arguments
can implement both sum and prod.
Define sum2 and prod2 using reduce.

(Try it)

Goal:  If you finish early, use 
map and reduce  together to 
find the sum of the squares of 
the elements of a list.

(Try it)



Another example
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let rec sum (xs:int list) : int = 
match xs with 
| [] -> b
| hd::tl -> hd + (sum tl)

let rec prod (xs:int list) : int = 
match xs with 
| [] -> b
| hd::tl -> hd * (prod tl)



Another example
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let rec sum (xs:int list) : int = 
match xs with 
| [] -> b
| hd::tl -> hd OP (RECURSIVE CALL ON tl)

let rec prod (xs:int list) : int = 
match xs with 
| [] -> b
| hd::tl -> hd OP (RECURSIVE CALL ON tl)



Another example

12

let rec sum (xs:int list) : int = 
match xs with 
| [] -> b
| hd::tl -> f hd (RECURSIVE CALL ON tl)

let rec prod (xs:int list) : int = 
match xs with 
| [] -> b
| hd::tl -> f hd (RECURSIVE CALL ON tl)



A generic reducer
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let add x y = x + y 
let mul x y = x * y

let rec reduce (f:int->int->int) (b:int) (xs:int list) : int = 
match xs with
| [] -> b
| hd::tl -> f hd (reduce f b tl)

let sum xs = reduce add 0 xs
let prod xs = reduce mul 1 xs



Using Anonymous Functions
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let rec reduce (f:int->int->int) (b:int) (xs:int list) : int = 
match xs with
| [] -> b
| hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (fun x y -> x+y) 0 xs
let prod xs = reduce (fun x y -> x*y) 1 xs



Using Anonymous Functions
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let rec reduce (f:int->int->int) (b:int) (xs:int list) : int = 
match xs with
| [] -> b
| hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (fun x y -> x+y) 0 xs
let prod xs = reduce (fun x y -> x*y) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs



Using Anonymous Functions
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let rec reduce (f:int->int->int) (b:int) (xs:int list) : int = 
match xs with
| [] -> b
| hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (+) 0 xs
let prod xs = reduce ( * ) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs



Using Anonymous Functions

17

let rec reduce (f:int->int->int) (b:int) (xs:int list) : int = 
match xs with
| [] -> b
| hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (+) 0 xs
let prod xs = reduce (*) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs

wrong



Using Anonymous Functions
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let rec reduce (f:int->int->int) (b:int) (xs:int list) : int = 
match xs with
| [] -> b
| hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (+) 0 xs
let prod xs = reduce (*) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs

wrong  -- creates a comment!  ug.  OCaml -0.1

what does work is:   ( * )   



More on Anonymous Functions
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Function declarations:

are syntactic sugar for:

In other words, functions are values we can bind to a variable, 
just like 3 or “moo” or true.  

Functions are 2nd class no more!

let square x = x*x 

let add x y = x+y

let square = (fun x -> x*x) 

let add = (fun x y -> x+y) 



One argument, one result
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Simplifying further:

is shorthand for:

That is, add is a function which:
– when given a value x, returns a function (fun y -> x+y) which:

• when given a value y, returns x+y.

let add = (fun x y -> x+y)

let add = (fun x -> (fun y -> x+y))



Curried Functions
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curry: verb
(1) to prepare or flavor with hot-tasting spices
(2) to encode a multi-argument function using nested, higher-

order functions.

fun x -> (fun y -> x+y) (* curried *)

fun x y -> x + y (* curried *)

fun (x,y) -> x+y (* uncurried *)

(1)

(2)



Curried Functions
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Named after the logician Haskell B. Curry (1950s).
– was trying to find minimal logics that are powerful enough to 

encode traditional logics.
– much easier to prove something about a logic with 3 connectives 

than one with 20.  
– the ideas translate directly to math (set & category theory) as well 

as to computer science. 
– Actually, Moses Schönfinkel did some of this in 1924

• thankfully, we don't have to talk about Schönfinkelled functions

Curry Schönfinkel



What’s so good about Currying?

24

In addition to simplifying the language, currying functions so that 
they only take one argument leads to two major wins:

1. We can partially apply a function.
2. We can more easily compose functions. 



Partial Application
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Curried functions allow defs of new, partially applied functions:  

Equivalent to writing:

which is equivalent to writing:

also:

let add = (fun x -> (fun y -> x+y)) 

let inc = add 1

let inc = (fun y -> 1+y)

let inc y = 1+y

let inc2 = add 2
let inc3 = add 3



SIMPLE REASONING ABOUT 
HIGHER-ORDER FUNCTIONS



Reasoning About Definitions
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let square_all = map square 

let square_all ys =
match ys with
| [] -> []
| hd::tl -> (square hd)::(square_all tl)

We can factor this program

into this program:

assuming we already have a definition of map



Reasoning About Definitions
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Goal:  Rewrite definitions so my program is simpler, easier to 
understand, more concise, … 

Question:  What are the reasoning principles for rewriting programs 
without breaking them?  For reasoning about the behavior of 
programs?  About the equivalence of  two programs?

I want some rules that never fail.

let square_all = map square

let square_all ys =
match ys with
| [] -> []
| hd::tl -> (square hd)::(square_all tl)



Simple Equational Reasoning

(fun x -> ... x ...) arg ... arg ...

let f = def let f x = (def) x

chose name x wisely so it does not
shadow other names used in def

if arg is a value or, when executed,
will always terminate without effect and 
produce a value

Rewrite 2 (Substitution):

Rewrite 3 (Eta-expansion):

if f has a function type

let f x = body let f = (fun x -> body)

Rewrite 1 (Function de-sugaring):

==

==

==

roughly:  all occurrences of x replaced 
by arg (though getting this exactly
right is shockingly difficult)



Using the rules
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Let’s use these rules 
to prove that these two functions are equivalent

let square_all = map square

let square_all ys =
match ys with
| [] -> []
| hd::tl -> (square hd)::(square_all tl)



Eliminating the Sugar in Map
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let rec map f xs = 
match xs with 
| [] -> []

| hd::tl -> (f hd)::(map f tl)



Eliminating the Sugar in Map
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let rec map f xs = 
match xs with 
| [] -> []

| hd::tl -> (f hd)::(map f tl)

let rec map = 
(fun f -> 

(fun xs -> 

match xs with
| [] -> []

| hd::tl -> (f hd)::(map f tl)))



Consider square_all
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let rec map = 
(fun f -> 

(fun xs -> 

match xs with
| [] -> []

| hd::tl -> (f hd)::(map f tl)))

let square_all =

map square 



Substitute map definition into square_all
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let rec map = 
(fun f -> 

(fun xs -> 

match xs with
| [] -> []

| hd::tl -> (f hd)::(map f tl)))

let square_all =

(fun f ->

(fun xs -> 

match xs with
| [] -> []

| hd::tl -> (f hd)::(map f tl)

)

) square 



Substitute map definition into square_all
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let rec map = 
(fun f -> 

(fun xs -> 

match xs with
| [] -> []

| hd::tl -> (f hd)::(map f tl)))

let square_all =

(fun f ->

(fun xs -> 

match xs with
| [] -> []

| hd::tl -> (f hd)::(map f tl)

)

) square 



Substitute map definition into square_all
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let rec map = 
(fun f -> 

(fun xs -> 

match xs with
| [] -> []

| hd::tl -> (f hd)::(map f tl)))

let square_all =

(fun f ->

(fun xs -> 

match xs with
| [] -> []

| hd::tl -> (f hd)::(map f tl)

)

) square 



Substitute Square
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let rec map = 
(fun f -> 

(fun xs -> 

match xs with
| [] -> []

| hd::tl -> (f hd)::(map f tl)))

let square_all =

(

(fun xs -> 

match xs with
| [] -> []

| hd::tl -> (square hd)::(map square tl)

)

argument square substituted
for parameter f



Expanding map square
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let rec map = 
(fun f -> 

(fun xs -> 

match xs with
| [] -> []

| hd::tl -> (f hd)::(map f tl)))

let square_all ys =

(fun xs -> 

match xs with
| [] -> []

| hd::tl -> (square hd)::(map square tl)

) ys

add argument
via eta-expansion



Expanding map square
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let rec map = 
(fun f -> 

(fun xs -> 

match xs with
| [] -> []

| hd::tl -> (f hd)::(map f tl)))

let square_all ys =

match ys with
| [] -> []

| hd::tl -> (square hd)::(map square tl)

substitute again 
(argument ys for 
parameter xs)



So Far
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let rec map f xs = 
match xs with
| [] -> []
| hd::tl -> (f hd)::(map f tl)

let square_all xs = map square xs

let square_all ys =
match ys with
| [] -> []
| hd::tl -> (square hd)::(map square tl)

proof by
simple
rewriting
unrolls
definition
once



Next Step
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let rec map f xs = 
match xs with
| [] -> []
| hd::tl -> (f hd)::(map f tl)

let square_all xs = map square xs

let square_all ys =
match ys with
| [] -> []
| hd::tl -> (square hd)::(map square tl)

;;

let rec square_all ys =
match ys with
| [] -> []
| hd::tl -> (square hd)::(square_all tl)

let square_all ys =
match ys with
| [] -> []
| hd::tl -> (square hd)::(map square tl)

proof
by
induction
eliminates
recursive
function
map

proof by
simple
rewriting
unrolls
definition
once



Summary
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We saw this:

Is equivalent to this:

Morals of the story:
(1) OCaml’s HOT (higher-order, typed) functions capture recursion patterns
(2) we can figure out what is going on by equational reasoning.
(3) ... but we typically need to do proofs by induction to reason about recursive 
(inductive) functions

let rec map f xs = 
match xs with
| [] -> []
| hd::tl -> (f hd)::(map f tl);;

let square_all = map square

let square_all ys =
match ys with

| [] -> []
| hd::tl -> (square hd)::(map square tl)


