
Insertion Sort

Speaker: David Walker
COS 326

Princeton University

slides copyright 2020 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Recall Insertion Sort

At any point during the insertion sort:
– some initial segment of the array will be sorted
– the rest of the array will be in the same (unsorted) order as it

was originally

-5 -2 3 -4 10 6 7

sorted unsorted

2

Recall Insertion Sort

At any point during the insertion sort:
– some initial segment of the array will be sorted
– the rest of the array will be in the same (unsorted) order as it

was originally

At each step, take the next item in the array and insert it in order
into the sorted portion of the list

-5 -2 3 -4 10 6 7

sorted unsorted

-5 -4 -2 3 10 6 7

sorted unsorted

3

Insertion Sort With Lists
The algorithm is similar, except instead of one array, we will
maintain two lists, a sorted list and an unsorted list

We'll factor the algorithm:
– a function to insert into a sorted list
– a sorting function that repeatedly inserts

-5 -2 3 -4 10 6 7

sorted unsorted

list 1: list 2:

4

Insert

(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =

5

Insert

(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
match xs with
| [] ->
| hd :: tl ->

a familiar pattern:
analyze the list by cases

6

Insert

(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
match xs with
| [] -> [x]
| hd :: tl -> insert x into the

empty list

7

Insert

(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
match xs with
| [] -> [x]
| hd :: tl ->

if hd < x then
hd :: insert x tl

build a new list with:
• hd at the beginning
• the result of inserting x in to

the tail of the list afterwards

8

Insert

(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
match xs with
| [] -> [x]
| hd :: tl ->

if hd < x then
hd :: insert x tl

else
x :: xs

put x on the front of the list,
the rest of the list follows

9

A Common Paradigm
Some functions over inductive data do their work like this:
• step 1: set up initial conditions
• step 2: iterate/recurse over the data

10

A Common Paradigm
Some functions over inductive data do their work like this:
• step 1: set up initial conditions
• step 2: iterate/recurse over the data

How that looks:

11

let f x y =
let rec loop z =

… loop z …
in
let z = setup x y in
loop z

recursive loop

set up

Insertion Sort

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

12

Insertion Sort

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

let rec loop (sorted : il) (unsorted : il) : il =

in

13

Insertion Sort

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

let rec loop (sorted : il) (unsorted : il) : il =

in
loop [] xs

14

Insertion Sort

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

let rec loop (sorted : il) (unsorted : il) : il =
match unsorted with
| [] ->
| hd :: tl ->

in
loop [] xs

15

Insertion Sort

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

let rec loop (sorted : il) (unsorted : il) : il =
match unsorted with
| [] -> sorted
| hd :: tl ->

in
loop [] xs

16

Insertion Sort

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

let rec loop (sorted : il) (unsorted : il) : il =
match unsorted with
| [] -> sorted
| hd :: tl -> loop (insert hd sorted) tl

in
loop [] xs

17

Does Insertion Sort Terminate?
Recall that we said: inductive functions should call themselves
recursively on smaller data items.

What about that loop in insertion sort?

18

let rec loop (sorted : il) (unsorted : il) : il =
match unsorted with
| [] -> sorted
| hd :: tl -> loop (insert hd sorted) tl

Does Insertion Sort Terminate?
Recall that we said: inductive functions should call themselves
recursively on smaller data items.

What about that loop in insertion sort?

19

let rec loop (sorted : il) (unsorted : il) : il =
match unsorted with
| [] -> sorted
| hd :: tl -> loop (insert hd sorted) tl

growing! shrinking!

Does Insertion Sort Terminate?
Recall that we said: inductive functions should call themselves
recursively on smaller data items.

What about that loop in insertion sort?

Refined idea: Pick an argument up front. That argument must
contain smaller data on every recursive call.

20

let rec loop (sorted : il) (unsorted : il) : il =
match unsorted with
| [] -> sorted
| hd :: tl -> loop (insert hd sorted) tl

growing! shrinking!

Exercises
• Write a function to sum the elements of a list

– sum [1; 2; 3] ==> 6
• Write a function to append two lists

– append [1;2;3] [4;5;6] ==> [1;2;3;4;5;6]
• Write a function to reverse a list

– rev [1;2;3] ==> [3;2;1]
• Write a function to turn a list of pairs into a pair of lists

– split [(1,2); (3,4); (5,6)] ==> ([1;3;5], [2;4;6])
• Write a function that returns all prefixes of a list

– prefixes [1;2;3] ==> [[]; [1]; [1;2]; [1;2;3]]
• suffixes…

21

