Thinking Inductively

Speaker: David Walker
COS 326
Princeton University
An *inductive data type* T is a data type defined by:

- **base cases**
 - don’t refer to T

- **inductive cases**
 - build new data of type T from pre-existing data of type T
 - the pre-existing data is guaranteed to be *smaller* than the new values
An *inductive data type* T is a data type defined by:

- base cases
 - don’t refer to T
- inductive cases
 - build new data of type T from pre-existing data of type T
 - the pre-existing data is guaranteed to be *smaller* than the new values

Example: a tree

- base case:
 - the leaf of the tree
- inductive case:
 - the internal nodes of the tree
 - the left- and right- subtrees are the “smaller” data
To *program* a function over inductive data:

- think: what does my function need to do to be correct?
- solve the programming problem for the base cases
 - solve them one-by-one
- solve the programming problem for inductive cases:
 - solve them one-by-one
 - *assume your function already works correctly on smaller data values*
 - *call your function, when necessary, on smaller data values*
Inductive Proving

To prove a function over inductive data is correct:

– think: what is the correctness theorem for this function?

– prove the function correct for the base cases
 • prove them one-by-one

– prove the function correct for the inductive cases:
 • prove them one-by-one
 • assume your function already works correctly on smaller data values
 • use this assumption to reason about calls over smaller data values
 • this assumption is called the induction hypothesis of your proof
To prove a function over inductive data is correct:
 – think: what is the correctness theorem for this function?
 – prove the function correct for the base cases
 • prove them one-by-one
 – prove the function correct for the inductive cases:
 • prove them one-by-one
 • assume your function already works correctly on smaller data values
 • use this assumption to reason about calls over smaller data values
 • this assumption is called the induction hypothesis of your proof

To be a good programmer, you also need to be a good prover.
LISTS: AN INDUCTIVE DATA TYPE
Lists are Inductive Data

In OCaml, a list value is:

- `[]` (the empty list)
- `v :: vs` (a value `v` followed by a shorter list of values `vs`)

Base Case

Inductive Case
Lists are Inductive Data

In OCaml, a list value is:

- \([\]\) (the empty list)
- \(v :: vs\) (a value \(v\) followed by a shorter list of values \(vs\))

An example:

- \(2 :: 3 :: 5 :: [\]\) has type \(\text{int list}\)
- is the same as: \(2 :: (3 :: (5 :: [\]))\)
- ":::" is called "cons"

An alternative syntax ("syntactic sugar" for lists):

- \([2; 3; 5]\)
- But this is just a shorthand for \(2 :: 3 :: 5 :: [\]. If you ever get confused fall back on the 2 basic constructors, :: and []
Typing lists:

1. \([\]\) may have any list type, \(t\ list\)

2. if \(e_1 : t\) and \(e_2 : t\ list\) then \((e_1 :: e_2) : t\ list\)
Typing rules for lists:

(1) \([\,]\) may have any list type \(t\ list\)

(2) if \(e_1 : t\) and \(e_2 : t\ list\) then \((e_1 :: e_2) : t\ list\)

More examples:

(1 + 2) :: (3 + 4) :: \([\,]\) \(:: \) ??

(2 :: \([\,]\)) :: (5 :: 6 :: \([\,]\)) :: \([\,]\) \(:: \) ??

\([\,[2]; [5; 6]\,]\) \(:: \) ??
Typing Lists

Typing rules for lists:

(1) \[\] may have any list type \(t \ list \)

(2) if \(e_1 : t \) and \(e_2 : t \ list \) then \((e_1 :: e_2) : t \ list \)

More examples:

\[(1 + 2) :: (3 + 4) :: [] \quad : \text{int list}\]

\[(2 :: []) :: (5 :: 6 :: []) :: [] \quad : \text{int list list}\]

\[[[2]; [5; 6]] \quad : \text{int list list}\]

(Remember that the 3\(^{rd}\) example is an abbreviation for the 2\(^{nd}\))
Another Example

What type does this have?

Another Example

What type does this have?

```
# [2] :: [3];
Error: This expression has type int but an expression was expected of type int list
#
```
Another Example

What type does this have?

int list \quad \text{int list}

Give me a simple fix that makes the expression type check?
What type does this have?

int list int list

Give me a simple fix that makes the expression type check?

Either: 2 :: [3] : int list

Analyzing Lists

Just like options, there are two possibilities when deconstructing lists. Hence we use a match with two branches

(* return Some v, if v is the first list element; return None, if the list is empty *)

let head (xs : int list) : int option =
Analyzing Lists

Just like options, there are two possibilities when deconstructing lists. Hence we use a match with two branches

(* return Some v, if v is the first list element; return None, if the list is empty *)

let head (xs : int list) : int option =
match xs with
| [] ->
| hd :: _ ->

we don't care about the contents of the tail of the list so we use the underscore
Analyzing Lists

Just like options, there are two possibilities when deconstructing lists. Hence we use a match with two branches

(* return Some v, if v is the first list element; return None, if the list is empty *)

let head (xs : int list) : int option =
 match xs with
 | [] -> None
 | hd :: _ -> Some hd

This function isn't recursive -- we only extracted a small, fixed amount of information from the list -- the first element
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10] *)
(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] ->
 | (x,y) :: tl ->

(* Given a list of pairs of integers, produce the list of products of the pairs *)

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl ->
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10] *)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> []
| (x,y) :: tl -> ?? :: ??

the result type is int list, so we can speculate that we should create a list
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10] *)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> []
| (x,y) :: tl -> (x * y) :: ??

the first element is the product
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> []
| (x,y) :: tl -> (x * y) :: ??

to complete the job, we must compute the products for the rest of the list
A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> []
| (x,y) :: tl -> (x * y) :: prods tl
Three Parts to Constructing a Function

(1) Think about how to *break down* the input into cases:

```ocaml
let rec prods (xs : (int*int) list) : int list =
  match xs with
  | [] -> ...
  | (x,y) :: tl -> ...
```

(2) *Assume* the recursive call on smaller data is correct.

(3) Use the result of the recursive call to *build* correct answer.

```ocaml
let rec prods (xs : (int*int) list) : int list =
  ...
  | (x,y) :: tl -> ...
  prods tl ...
```
Another example: zip

(* Given two lists of integers, return None if the lists are different lengths otherwise stitch the lists together to create Some of a list of pairs

zip [2; 3] [4; 5] == Some [(2,4); (3,5)]
zip [5; 3] [4] == None
zip [4; 5; 6] [8; 9; 10; 11; 12] == None
*)

(Give it a try.)
Another example: zip

let rec zip (xs : int list) (ys : int list) : (int * int) list option =
let rec zip (xs : int list) (ys : int list) : (int * int) list option =

 match (xs, ys) with
let rec zip (xs : int list) (ys : int list) : (int * int) list option =

match (xs, ys) with
| ([], []) ->
| ([], y::ys') ->
| (x::xs', []) ->
| (x::xs', y::ys') ->
let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') ->
 | (x::xs', []) ->
 | (x::xs', y::ys') ->
Another example: zip

let rec zip (xs : int list) (ys : int list) : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') -> None
 | (x::xs', []) -> None
 | (x::xs', y::ys') ->
let rec zip (xs : int list) (ys : int list) : (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> None
| (x::xs', []) -> None
| (x::xs', y::ys') -> (x, y) :: zip xs' ys'

is this ok?
Another example: zip

```
let rec zip (xs : int list) (ys : int list) : (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> None
| (x::xs', []) -> None
| (x::xs', y::ys') -> (x, y) :: zip xs' ys'
```

No! zip returns a list option, not a list!
We need to match it and decide if it is Some or None.
let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') -> None
 | (x::xs', []) -> None
 | (x::xs', y::ys') ->
 (match zip xs' ys' with
 None -> None
 | Some zs -> (x,y) :: zs)

Is this ok?
let rec zip (xs : int list) (ys : int list) : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') -> None
 | (x::xs', []) -> None
 | (x::xs', y::ys') ->
 (match zip xs' ys' with
 None -> None
 | Some zs -> Some ((x,y) :: zs))
Another example: zip

```
let rec zip (xs : int list) (ys : int list)  
  : (int * int) list option =

  match (xs, ys) with
  | ([], []) -> Some []
  | (x::xs', y::ys') ->
    (match zip xs' ys' with
     None -> None
     | Some zs -> Some ((x,y) :: zs))
  | (_, _) -> None
```

Clean up.
Reorganize the cases.
Pattern matching proceeds in order.
let rec sum (xs : int list) : int =
 match xs with
 | hd::tl -> hd + sum tl
A bad list example

let rec sum (xs : int list) : int =
 match xs with
 | hd::tl -> hd + sum tl

Characters 39-78:
..match xs with
 hd :: tl -> hd + sum tl..
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched: []
val sum : int list -> int = <fun>