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Inductive Programming
An inductive data type T is a data type defined by:

– base cases 
• don’t refer to T

– inductive cases
• build new data of type T from pre-existing data of type T
• the pre-existing data is guaranteed to be smaller than the new values
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Inductive Programming
An inductive data type T is a data type defined by:

– base cases 
• don’t refer to T

– inductive cases
• build new data of type T from pre-existing data of type T
• the pre-existing data is guaranteed to be smaller than the new values

Example: a tree
– base case:

• the leaf of the tree
– inductive case:  

• the internal nodes of the tree
• the left- and right- subtrees are the “smaller” data
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Inductive Programming

To program a function over inductive data:
– think: what does my function need to do to be correct?
– solve the programming problem for the base cases

• solve them one-by-one
– solve the programming problem for inductive cases:

• solve them one-by-one
• assume your function already works correctly on smaller data values
• call your function, when necessary, on smaller data values
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Inductive Proving

To prove a function over inductive data is correct:
– think:  what is the correctness theorem for this function?
– prove the function correct for the base cases

• prove them one-by-one
– prove the function correct for the inductive cases:

• prove them one-by-one
• assume your function already works correctly on smaller data values
• use this assumption to reason about calls over smaller data values
• this assumption is called the induction hypothesis of your proof
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Inductive Proving

To prove a function over inductive data is correct:
– think:  what is the correctness theorem for this function?
– prove the function correct for the base cases

• prove them one-by-one
– prove the function correct for the inductive cases:

• prove them one-by-one
• assume your function already works correctly on smaller data values
• use this assumption to reason about calls over smaller data values
• this assumption is called the induction hypothesis of your proof

To be a good programmer, you also need to be a good prover.
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LISTS:  AN INDUCTIVE DATA TYPE
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Lists are Inductive Data
In OCaml, a list value is:

– [ ] (the empty list)
– v :: vs (a value v followed by a shorter list of values vs) 
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Lists are Inductive Data
In OCaml, a list value is:

[ ] (the empty list)
v :: vs (a value v followed by a shorter list of values vs) 

An example:
– 2 :: 3 :: 5 :: [ ] has type int list
– is the same as:  2 :: (3 :: (5 :: [ ]))
– "::" is called "cons"

An alternative syntax (“syntactic sugar” for lists):
– [2; 3; 5]
– But this is just a shorthand for 2 :: 3 :: 5 :: []. If you ever get 

confused fall back on the 2 basic constructors,   :: and []
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Typing Lists
Typing rules for lists:

[ ] may have any list type,     t list 

if e1 : t and  e2 : t list
then (e1 :: e2) : t list

(1)

(2)
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Typing Lists
Typing rules for lists:

More examples:
(1 + 2) :: (3 + 4) :: [ ] : ??

(2 :: [ ]) :: (5 :: 6  :: [ ]) :: [ ] : ??

[ [2]; [5; 6] ] : ??

[ ] may have any list type t list 

if e1 : t and  e2 : t list
then (e1 :: e2) : t list

(1)

(2)
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Typing Lists
Typing rules for lists:

More examples:
(1 + 2) :: (3 + 4) :: [ ] : int list

(2 :: [ ]) :: (5 :: 6  :: [ ]) :: [ ] : int list list

[ [2]; [5; 6] ] : int list list

(Remember that the 3rd example is an abbreviation for the 2nd)

[ ] may have any list type t list 

if e1 : t and  e2 : t list
then (e1 :: e2) : t list

(1)

(2)
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Another Example

What type does this have?

[ 2 ] :: [ 3 ]
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Another Example

# [2] :: [3];;
Error: This expression has type int but an 

expression was expected of type
int list

#

What type does this have?

[ 2 ] :: [ 3 ]

int list int list
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Another Example

What type does this have?

[ 2 ] :: [ 3 ]

Give me a simple fix that makes the expression type check?

int list int list
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Another Example

What type does this have?

[ 2 ] :: [ 3 ]

Give me a simple fix that makes the expression type check?

Either:         2  ::  [ 3 ]     : int list

Or:           [ 2 ] :: [ [ 3 ] ] : int list list

int list int list
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Analyzing Lists
Just like options, there are two possibilities when deconstructing 
lists. Hence we use a match with two branches

(* return Some v, if v is the first list element;
return None, if the list is empty *)  

let head (xs : int list) : int option =
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Analyzing Lists
Just like options, there are two possibilities when deconstructing 
lists. Hence we use a match with two branches

(* return Some v, if v is the first list element;
return None, if the list is empty *)  

let head (xs : int list) : int option =
match xs with
| [] -> 
| hd :: _ -> 

we don't care about the contents of the
tail of the list so we use the underscore
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Analyzing Lists
Just like options, there are two possibilities when deconstructing 
lists. Hence we use a match with two branches

This function isn't recursive -- we only extracted a small , fixed 
amount of information from the list -- the first element

(* return Some v, if v is the first list element;
return None, if the list is empty *)  

let head (xs : int list) : int option =
match xs with
| [] -> None 
| hd :: _ -> Some hd
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A more interesting example

(* Given a list of pairs of integers, 
produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)  
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A more interesting example

(* Given a list of pairs of integers, 
produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)  

let rec prods (xs : (int * int) list) : int list =
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A more interesting example

(* Given a list of pairs of integers, 
produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)  

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> 
| (x,y) :: tl -> 
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A more interesting example

(* Given a list of pairs of integers, 
produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)  

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> [] 
| (x,y) :: tl ->
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A more interesting example

(* Given a list of pairs of integers, 
produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)  

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> [] 
| (x,y) :: tl -> ?? :: ?? 

the result type is int list, so we can speculate
that we should create a list

24



A more interesting example

(* Given a list of pairs of integers, 
produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)  

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> [] 
| (x,y) :: tl -> (x * y) :: ??

the first element is the product
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A more interesting example

(* Given a list of pairs of integers, 
produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)  

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> [] 
| (x,y) :: tl -> (x * y) :: ??

to complete the job, we must compute
the products for the rest of the list

26



A more interesting example

(* Given a list of pairs of integers, 
produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)  

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> [] 
| (x,y) :: tl -> (x * y) :: prods tl
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Three Parts to Constructing a Function

let rec prods (xs : (int*int) list) : int list =
match xs with

| [] ->  ...

| (x,y) :: tl ->   ...

(1) Think about how to break down the input into cases:

let rec prods (xs : (int*int) list) : int list =
...
| (x,y) :: tl ->   ...  prods tl ...

(2) Assume the recursive call on smaller data is correct. 

(3) Use the result of the recursive call to build correct answer.
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Another example: zip

(* Given two lists of integers, 
return None if the lists are different lengths
otherwise stitch the lists together to create

Some of a list of pairs

zip [2; 3] [4; 5] == Some [(2,4); (3,5)]
zip [5; 3] [4] == None
zip [4; 5; 6] [8; 9; 10; 11; 12] == None

*)  

(Give it a try.)
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Another example: zip

let rec zip (xs : int list) (ys : int list) 
: (int * int) list option =
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Another example: zip

let rec zip (xs : int list) (ys : int list) 
: (int * int) list option =

match (xs, ys) with
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Another example: zip

let rec zip (xs : int list) (ys : int list) 
: (int * int) list option =

match (xs, ys) with
| ([], []) ->
| ([], y::ys') -> 
| (x::xs', []) -> 
| (x::xs', y::ys') -> 
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Another example: zip

let rec zip (xs : int list) (ys : int list) 
: (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> 
| (x::xs', []) -> 
| (x::xs', y::ys') -> 
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Another example: zip

let rec zip (xs : int list) (ys : int list) 
: (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> None
| (x::xs', []) -> None
| (x::xs', y::ys') -> 
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Another example: zip

let rec zip (xs : int list) (ys : int list) 
: (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> None
| (x::xs', []) -> None
| (x::xs', y::ys') -> (x, y) :: zip xs' ys'

is this  ok?
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Another example: zip

let rec zip (xs : int list) (ys : int list) 
: (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> None
| (x::xs', []) -> None
| (x::xs', y::ys') -> (x, y) :: zip xs' ys'

No!  zip returns a list option, not a list!  
We need to match it and decide if it is Some or None.
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Another example: zip

let rec zip (xs : int list) (ys : int list) 
: (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> None
| (x::xs', []) -> None
| (x::xs', y::ys') -> 

(match zip xs' ys' with
None -> None

| Some zs -> (x,y) :: zs)

Is this ok?
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Another example: zip

let rec zip (xs : int list) (ys : int list) 
: (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> None
| (x::xs', []) -> None
| (x::xs', y::ys') -> 

(match zip xs' ys' with
None -> None

| Some zs -> Some ((x,y) :: zs))
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Another example: zip

let rec zip (xs : int list) (ys : int list) 
: (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| (x::xs', y::ys') -> 

(match zip xs' ys' with
None -> None

| Some zs -> Some ((x,y) :: zs))
| (_, _) -> None

Clean up. 
Reorganize the cases.
Pattern matching proceeds in order.
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A bad list example

let rec sum (xs : int list) : int =
match xs with
| hd::tl -> hd + sum tl
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A bad list example

let rec sum (xs : int list) : int =
match xs with
| hd::tl -> hd + sum tl

#       Characters 39-78:
..match xs with

hd :: tl -> hd + sum tl..
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched: []
val sum : int list -> int = <fun>
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