
Thinking Inductively

Speaker: David Walker
COS 326

Princeton University

slides copyright 2020 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Inductive Programming
An inductive data type T is a data type defined by:

– base cases
• don’t refer to T

– inductive cases
• build new data of type T from pre-existing data of type T
• the pre-existing data is guaranteed to be smaller than the new values

2

Inductive Programming
An inductive data type T is a data type defined by:

– base cases
• don’t refer to T

– inductive cases
• build new data of type T from pre-existing data of type T
• the pre-existing data is guaranteed to be smaller than the new values

Example: a tree
– base case:

• the leaf of the tree
– inductive case:

• the internal nodes of the tree
• the left- and right- subtrees are the “smaller” data

3

Inductive Programming

To program a function over inductive data:
– think: what does my function need to do to be correct?
– solve the programming problem for the base cases

• solve them one-by-one
– solve the programming problem for inductive cases:

• solve them one-by-one
• assume your function already works correctly on smaller data values
• call your function, when necessary, on smaller data values

4

Inductive Proving

To prove a function over inductive data is correct:
– think: what is the correctness theorem for this function?
– prove the function correct for the base cases

• prove them one-by-one
– prove the function correct for the inductive cases:

• prove them one-by-one
• assume your function already works correctly on smaller data values
• use this assumption to reason about calls over smaller data values
• this assumption is called the induction hypothesis of your proof

5

Inductive Proving

To prove a function over inductive data is correct:
– think: what is the correctness theorem for this function?
– prove the function correct for the base cases

• prove them one-by-one
– prove the function correct for the inductive cases:

• prove them one-by-one
• assume your function already works correctly on smaller data values
• use this assumption to reason about calls over smaller data values
• this assumption is called the induction hypothesis of your proof

To be a good programmer, you also need to be a good prover.

6

LISTS: AN INDUCTIVE DATA TYPE

7

Lists are Inductive Data
In OCaml, a list value is:

– [] (the empty list)
– v :: vs (a value v followed by a shorter list of values vs)

8

Base Case
Inductive Case

Lists are Inductive Data
In OCaml, a list value is:

[] (the empty list)
v :: vs (a value v followed by a shorter list of values vs)

An example:
– 2 :: 3 :: 5 :: [] has type int list
– is the same as: 2 :: (3 :: (5 :: []))
– "::" is called "cons"

An alternative syntax (“syntactic sugar” for lists):
– [2; 3; 5]
– But this is just a shorthand for 2 :: 3 :: 5 :: []. If you ever get

confused fall back on the 2 basic constructors, :: and []

9

Typing Lists
Typing rules for lists:

[] may have any list type, t list

if e1 : t and e2 : t list
then (e1 :: e2) : t list

(1)

(2)

10

Typing Lists
Typing rules for lists:

More examples:
(1 + 2) :: (3 + 4) :: [] : ??

(2 :: []) :: (5 :: 6 :: []) :: [] : ??

[[2]; [5; 6]] : ??

[] may have any list type t list

if e1 : t and e2 : t list
then (e1 :: e2) : t list

(1)

(2)

11

Typing Lists
Typing rules for lists:

More examples:
(1 + 2) :: (3 + 4) :: [] : int list

(2 :: []) :: (5 :: 6 :: []) :: [] : int list list

[[2]; [5; 6]] : int list list

(Remember that the 3rd example is an abbreviation for the 2nd)

[] may have any list type t list

if e1 : t and e2 : t list
then (e1 :: e2) : t list

(1)

(2)

12

Another Example

What type does this have?

[2] :: [3]

13

Another Example

[2] :: [3];;
Error: This expression has type int but an

expression was expected of type
int list

#

What type does this have?

[2] :: [3]

int list int list

14

Another Example

What type does this have?

[2] :: [3]

Give me a simple fix that makes the expression type check?

int list int list

15

Another Example

What type does this have?

[2] :: [3]

Give me a simple fix that makes the expression type check?

Either: 2 :: [3] : int list

Or: [2] :: [[3]] : int list list

int list int list

16

Analyzing Lists
Just like options, there are two possibilities when deconstructing
lists. Hence we use a match with two branches

(* return Some v, if v is the first list element;
return None, if the list is empty *)

let head (xs : int list) : int option =

17

Analyzing Lists
Just like options, there are two possibilities when deconstructing
lists. Hence we use a match with two branches

(* return Some v, if v is the first list element;
return None, if the list is empty *)

let head (xs : int list) : int option =
match xs with
| [] ->
| hd :: _ ->

we don't care about the contents of the
tail of the list so we use the underscore

18

Analyzing Lists
Just like options, there are two possibilities when deconstructing
lists. Hence we use a match with two branches

This function isn't recursive -- we only extracted a small , fixed
amount of information from the list -- the first element

(* return Some v, if v is the first list element;
return None, if the list is empty *)

let head (xs : int list) : int option =
match xs with
| [] -> None
| hd :: _ -> Some hd

19

A more interesting example

(* Given a list of pairs of integers,
produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

20

A more interesting example

(* Given a list of pairs of integers,
produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =

21

A more interesting example

(* Given a list of pairs of integers,
produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] ->
| (x,y) :: tl ->

22

A more interesting example

(* Given a list of pairs of integers,
produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> []
| (x,y) :: tl ->

23

A more interesting example

(* Given a list of pairs of integers,
produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> []
| (x,y) :: tl -> ?? :: ??

the result type is int list, so we can speculate
that we should create a list

24

A more interesting example

(* Given a list of pairs of integers,
produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> []
| (x,y) :: tl -> (x * y) :: ??

the first element is the product

25

A more interesting example

(* Given a list of pairs of integers,
produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> []
| (x,y) :: tl -> (x * y) :: ??

to complete the job, we must compute
the products for the rest of the list

26

A more interesting example

(* Given a list of pairs of integers,
produce the list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
match xs with
| [] -> []
| (x,y) :: tl -> (x * y) :: prods tl

27

Three Parts to Constructing a Function

let rec prods (xs : (int*int) list) : int list =
match xs with

| [] -> ...

| (x,y) :: tl -> ...

(1) Think about how to break down the input into cases:

let rec prods (xs : (int*int) list) : int list =
...
| (x,y) :: tl -> ... prods tl ...

(2) Assume the recursive call on smaller data is correct.

(3) Use the result of the recursive call to build correct answer.

28

Another example: zip

(* Given two lists of integers,
return None if the lists are different lengths
otherwise stitch the lists together to create

Some of a list of pairs

zip [2; 3] [4; 5] == Some [(2,4); (3,5)]
zip [5; 3] [4] == None
zip [4; 5; 6] [8; 9; 10; 11; 12] == None

*)

(Give it a try.)

29

Another example: zip

let rec zip (xs : int list) (ys : int list)
: (int * int) list option =

30

Another example: zip

let rec zip (xs : int list) (ys : int list)
: (int * int) list option =

match (xs, ys) with

31

Another example: zip

let rec zip (xs : int list) (ys : int list)
: (int * int) list option =

match (xs, ys) with
| ([], []) ->
| ([], y::ys') ->
| (x::xs', []) ->
| (x::xs', y::ys') ->

32

Another example: zip

let rec zip (xs : int list) (ys : int list)
: (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') ->
| (x::xs', []) ->
| (x::xs', y::ys') ->

33

Another example: zip

let rec zip (xs : int list) (ys : int list)
: (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> None
| (x::xs', []) -> None
| (x::xs', y::ys') ->

34

Another example: zip

let rec zip (xs : int list) (ys : int list)
: (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> None
| (x::xs', []) -> None
| (x::xs', y::ys') -> (x, y) :: zip xs' ys'

is this ok?

35

Another example: zip

let rec zip (xs : int list) (ys : int list)
: (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> None
| (x::xs', []) -> None
| (x::xs', y::ys') -> (x, y) :: zip xs' ys'

No! zip returns a list option, not a list!
We need to match it and decide if it is Some or None.

36

Another example: zip

let rec zip (xs : int list) (ys : int list)
: (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> None
| (x::xs', []) -> None
| (x::xs', y::ys') ->

(match zip xs' ys' with
None -> None

| Some zs -> (x,y) :: zs)

Is this ok?

37

Another example: zip

let rec zip (xs : int list) (ys : int list)
: (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> None
| (x::xs', []) -> None
| (x::xs', y::ys') ->

(match zip xs' ys' with
None -> None

| Some zs -> Some ((x,y) :: zs))

38

Another example: zip

let rec zip (xs : int list) (ys : int list)
: (int * int) list option =

match (xs, ys) with
| ([], []) -> Some []
| (x::xs', y::ys') ->

(match zip xs' ys' with
None -> None

| Some zs -> Some ((x,y) :: zs))
| (_, _) -> None

Clean up.
Reorganize the cases.
Pattern matching proceeds in order.

39

A bad list example

let rec sum (xs : int list) : int =
match xs with
| hd::tl -> hd + sum tl

40

A bad list example

let rec sum (xs : int list) : int =
match xs with
| hd::tl -> hd + sum tl

Characters 39-78:
..match xs with

hd :: tl -> hd + sum tl..
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched: []
val sum : int list -> int = <fun>

41

