Thinking Inductively

Speaker: David Walker
COS 326
Princeton University

[)] ‘le‘\ \
slides copyright 2020 David Walker and Andrél Appel
permission granted to reuse these slides for non-commercial educational purposes

Inductive Programming]

An inductive data type T is a data type defined by:

— base cases
e don'trefertoT
— inductive cases
* build new data of type T from pre-existing data of type T
* the pre-existing data is guaranteed to be smaller than the new values

Inductive Programming]

An inductive data type T is a data type defined by:
— base cases
e don'trefertoT
— inductive cases
* build new data of type T from pre-existing data of type T
* the pre-existing data is guaranteed to be smaller than the new values

Example: a tree
— base case:
* the leaf of the tree
— inductive case:

* the internal nodes of the tree
* the left- and right- subtrees are the “smaller” data .

Inductive Programming

To program a function over inductive data:

— think: what does my function need to do to be correct?
— solve the programming problem for the base cases
* solve them one-by-one
— solve the programming problem for inductive cases:
* solve them one-by-one
e assume your function already works correctly on smaller data values

* call your function, when necessary, on smaller data values

Inductive Proving

To prove a function over inductive data is correct:
— think: what is the correctness theorem for this function?
— prove the function correct for the base cases
e prove them one-by-one
— prove the function correct for the inductive cases:

e prove them one-by-one

e assume your function already works correctly on smaller data values
* use this assumption to reason about calls over smaller data values

* this assumption is called the induction hypothesis of your proof

Inductive Proving

To prove a function over inductive data is correct:
— think: what is the correctness theorem for this function?
— prove the function correct for the base cases
e prove them one-by-one
— prove the function correct for the inductive cases:

e prove them one-by-one
e assume your function already works correctly on smaller data values

* use this assumption to reason about calls over smaller data values
* this assumption is called the induction hypothesis of your proof

To be a good programmer, you also need to be a good prover.

LISTS: AN INDUCTIVE DATA TYPE

Lists are Inductive Data

In OCaml, a list value is:

— [

— v ::vs ~_ (avalue v followed by a shorter list of values vs)

(the empty list)

Base Case

Inductive Case

Lists are Inductive Data

In OCaml, a list value is:
[] (the empty list)
V:iVS (a value v followed by a shorter list of values vs)

An example:
— 2::3:5::[] has type int list
— isthesameas: 2::(3::(5::[]))

— "::"is called "cons"

An alternative syntax (“syntactic sugar” for lists):
— [2;3; 5]
— But this is just a shorthand for 2 :: 3 :: 5 :: []. If you ever get
confused fall back on the 2 basic constructors, ::and]

Typing Lists

Typing rules for lists:

(1) [] may have any list type,

(2) ifel:tand e2:tlist
then (el :: e2) : t list

t list

10

Typing Lists

Typing rules for lists:

(1) [] may have any list type t list

(2) ifel:tand e2:tlist
then (el :: e2) : t list

More examples:
(1+2)::(3+4)::[] . P

(2:[]) (56 =[]) =[] :7?°

[[2]; [5; 6]] . ??

11

Typing Lists

Typing rules for lists:

(1) [] may have any list type t list

(2) ifel:tand e2:tlist
then (el :: e2) : t list

More examples:
(1+2)::(3+4)::[] :int list

(2:[]) (56 =[] =[] :intlistlist
[[2]; [5; 6]] int list list

L
(Remember that the 3" example is an abbreviation for the 2"

Another Example

What type does this have?

[2]:[3]

13

Another Example

What type does this have?

[2]:[3]

=

int list int list
it [2] (317
Error: This expression has type int but an
expression was expected of type
int list
i

14

Another Example

What type does this have?

[2]:[3]

=

int list int list

Give me a simple fix that makes the expression type check?

15

Another Example

What type does this have?

[2]:[3]

—

int list int list

Give me a simple fix that makes the expression type check?
Either: 2 [3] :int list

Or: [2]:([31] . int list list

16

Analyzing Lists

Just like options, there are two possibilities when deconstructing
lists. Hence we use a match with two branches

(* return Some v, 1f v 1s the first list element;
return None, 1f the list 1s empty *)

let head (xs : int list) : 1int option =

Analyzing Lists

Just like options, there are two possibilities when deconstructing
lists. Hence we use a match with two branches

(* return Some v, 1f v 1s the first list element;
return None, 1f the list 1s empty *)

let head (xs : int list) : 1int option =
match xs with
| [] =>
[lael e S

we don't care about the contents of the -
tail of the list so we use the underscore

18

19

Analyzing Lists]

Just like options, there are two possibilities when deconstructing
lists. Hence we use a match with two branches

(* return Some v, 1f v 1s the first list element;
return None, 1f the list 1s empty *)

let head (xs : int list) : 1int option =
match xs with
| [] —> None
| hd :: -> Some hd

This function isn't recursive -- we only extracted a small, fixed
amount of information from the list -- the first element -

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

<)

20

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

<)

let rec prods (xs : (int * 1int) 1list) : int list

21

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

<)

let rec prods (xs : (int * int) 1list) : int list

match xs with

[l =>
| (x,y) :: £l —>

22

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

<)

let rec prods (xs : (int * int) 1list) : int list

match xs with

| [] => []
| (x,y) :: £l —>

23

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

)

let rec prods

prods

[(2,3): (4,7); (5,2)] == [6; 28; 10]

(xs : (int * int) 1list) : int list

match xs with

[] —>
(X,Y)

[]

tl => 2?2 :: 2?27

AN

the result type is int list, so we can speculate
that we should create a list

24

A more interesting example

(* Given a list of pairs of integers,

produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [06;
)
let rec prods (xs : (1nt * int) list)
match xs with
[l => [
| (x,y) ::: £l => (x * y) :: 27

AN

28; 10]

int list

the first element is the product

25

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)
let rec prods (xs : (int * int) 1list) : int list
match xs with
| [] => []
| (x,y) ::: £l => (x * y) :: 27

/

/

to complete the job, we must compute
the products for the rest of the list

26

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

*)

let rec prods (xs : (int * int) list) : int list =
match xs with
[l => 1]

| (x,y) :: tl -> (x * y) :: prods tl

Three Parts to Constructing a Function

(1) Think about how to break down the input into cases:

let rec prods (xs : (int*int) 1list) : 1nt list =
match xs with

| (x,y) :: tl ->

(2) Assume the recursive call on smaller data is correct.

(3) Use the result of the recursive call to build correct answer.

let rec prods (xs : (int*int) 1list) : 1nt list =

| (x,y) :: tl -> ... prods tl ...

28

Another example: zip

(* Given two lists of integers,
return None 1f the lists are different lengths
otherwise stitch the lists together to create
Some of a list of pairs

zip [2; 3] [4; 5] == Some [(2,4); (3,5)]
zip [5; 3] [4] == None
zip [4; 5; 6] [8; 9; 10, 11, 12] == None

(Give it a try.)

Another example: zip

let rec zip (xs :

(int * 1int)

int list)
list option

(ys :

int list)

30

Another example: zip

let rec zip (xs : int list) (ys : int list)
(Int * int) list option =

match (xs, ys) with

Another example:

Zip

let rec zip (xs : 1nt 1list) (ys :

(Int * int) list option =

match (xs, ys) with
L1, [1) >

| (L], y::ys') —->

| (x::xs', []) —->

| (x::xs', y::ys') —->

int list)

32

Another example: zip

let rec zip

(xs

(int * 1int)

match (xs, ys)
L1, [1) >
| ([, y::ys?")
| (x::xs', [1])
|«

int list)
list option

with
Some []
->

->

x::xs', yr:ys') ->

(ys

int list)

33

Another example: zip

let rec zip (xs : 1nt 1list) (ys : 1int list)
(int * int) list option =

match (xs, ys) with

| ([], []) —> Some []

| ([], y::ys') —> None
| (x::xs', []) —-> None
| (

x::xs', yr:ys') ->

34

Another example: zip

let rec

zlp (xs : 1nt 1list) (ys : 1nt list)

(int * int) list option =

match

(xs, ys) with

(L1, []) -> Some []

X

| (
| (x:
|

[1, y::ys') —> None

:xs', []) —-> None
:xs', y:r:iys') > (x, y) :: zip xs' ys'

/

is this ok?

35

Another example:

Zip

let rec zip (xs : 1nt 1list) (ys
(int * int) list option =

match (xs, ys) with

| (L1, []) —-> Some []

| ([], y::ys') —> None
| (x::xs', []) —-> None
|«

x::xs', y:i:ys') -> (x, V)

int list)

zlp xs'

ys'

No! zip returns a list option, not a list!

/

We need to match it and decide if it is Some or None.

36

Another example: zip

let rec zip (xs : 1nt 1list) (ys : 1int list)
(int * int) list option =

match (xs, ys) with

| (L1, []) —-> Some []
| ([], y::ys') —> None
| (x::xs', []) —-> None
| (x::xs', y::ys') —->

(match zip xs' ys' with
None -> None
| Some zs -> (X,y) :: zs)

A

/

Is this ok?

Another example: zip

let rec zip (xs : 1nt 1list) (ys : 1int list)
(int * int) list option =

match (xs, ys) with

| (L1, []) —-> Some []
| ([], y::ys') —> None
| (x::xs', []) —-> None
| (x::xs', y::ys') —->

(match zip xs' ys' with
None -> None
| Some zs -> Some ((x,y) :: zZS))

38

Another example: zip

let rec zip (xs : 1nt 1list) (ys : 1int list)
(int * int) list option =

match (xs, ys) with
| (L1, []) —-> Some []
| (x::xs', y::ys') —->
(match zip xs' ys' with
None -> None
| Some zs -> Some ((x,y) :: zZS))
| (,) —> None

AN

Clean up.
Reorganize the cases.
Pattern matching proceeds in order.

39

A bad list example

let rec sum (xs : int list) : int =
match xs with
| hd::tl -> hd + sum tl

A bad list example

let rec sum (xs : int list) : int =
match xs with
| hd::tl -> hd + sum tl

Characters 39-78:
..match xs with
hd :: t1 -> hd + sum tl..

Warning 8: this pattern-matching is not exhaustive.
Here i1s an example of a value that 1s not matched: []

val sum : int list -> int = <fun>

