
Options

Speaker: David Walker
COS 326

Princeton University

slides copyright 2020 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Options

Often, we either have a thing …. or we don’t:

2

17 “hi”

Options

Often, we either have a thing …. or we don’t:

3

17 “hi”

Option types are used in this situation: t option

Options

Often, we either have a thing …. or we don’t:

4

17 “hi”

Option types are used in this situation: t option

There’s one way to build a pair, but two ways to build an optional value:
• None -- when we’ve got nothing
• Some v -- when we’ve got a value v of type t

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float =

(x1, y1)

(x2, y2)

a

b
c

5

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float =
let (x1,y1) = p1 in
let (x2,y2) = p2 in

(x1, y1)

(x2, y2)

a

b
c

deconstruct tuple

6

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float =
let (x1,y1) = p1 in
let (x2,y2) = p2 in
let xd = x2 -. x1 in
if xd != 0.0 then
(y2 -. y1) /. xd

else
???

(x1, y1)

(x2, y2)

a

b
c

what can we return?

avoid divide by zero

7

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float option =
let (x1,y1) = p1 in
let (x2,y2) = p2 in
let xd = x2 -. x1 in
if xd != 0.0 then
???

else
???

(x1, y1)

(x2, y2)

a

b
c

we need an option
type as the result type

8

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float option =
let (x1,y1) = p1 in
let (x2,y2) = p2 in
let xd = x2 -. x1 in
if xd != 0.0 then
Some ((y2 -. y1) /. xd)

else
None

(x1, y1)

(x2, y2)

a

b
c

9

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float option =
let (x1,y1) = p1 in
let (x2,y2) = p2 in
let xd = x2 -. x1 in
if xd != 0.0 then
(y2 -. y1) /. xd

else
None

(x1, y1)

(x2, y2)

a

b
c

Has type float

Can have type float option

10

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float option =
let (x1,y1) = p1 in
let (x2,y2) = p2 in
let xd = x2 -. x1 in
if xd != 0.0 then
(y2 -. y1) /. xd

else
None

(x1, y1)

(x2, y2)

a

b
c

Has type float

Can have type float option WRONG: Type mismatch

11

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float option =
let (x1,y1) = p1 in
let (x2,y2) = p2 in
let xd = x2 -. x1 in
if xd != 0.0 then
(y2 -. y1) /. xd

else
None

(x1, y1)

(x2, y2)

a

b
c

Has type float

doubly WRONG:
result does not
match declared result

12

Remember the typing rule for if

Returning an optional value from an if statement:

if … then

None : t option

else

Some (…) : t option

13

if e1 : bool
and e2 : t and e3 : t (for some type t)
then if e1 then e2 else e3 : t

How do we use an option?

slope : point -> point -> float option

returns a float option

14

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =

15

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =
slope p1 p2

returns a float option;
to print we must discover if it is
None or Some

16

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =
match slope p1 p2 with

17

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =
match slope p1 p2 with
Some s ->

| None ->

There are two possibilities

Vertical bar separates possibilities

18

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =
match slope p1 p2 with
Some s ->

| None ->

The object between | and -> is called a pattern

The "Some s" pattern includes the variable s

19

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =
match slope p1 p2 with
| Some s ->
| None ->

You can put a “|” on the first line if you want.
It is generally considered better style to do so.

20

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =
match slope p1 p2 with
| Some s ->

print_string ("Slope: " ^ string_of_float s)
| None ->

print_string "Vertical line.\n"

21

Writing Functions Over Typed Data
• Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures
5. Build new output values
6. Clean up by identifying repeated patterns

• For option types:

match … with
| None -> …
| Some s -> …

when the input has type t option,
deconstruct with:

when the output has type t option,
construct with:

Some (…) None

22

MORE PATTERN MATCHING

23

Recall the Distance Function

type point = float * float

let distance (p1:point) (p2:point) : float =
let square x = x *. x in
let (x1,y1) = p1 in
let (x2,y2) = p2 in
sqrt (square (x2 -. x1) +. square (y2 -. y1))

24

Recall the Distance Function

type point = float * float

let distance (p1:point) (p2:point) : float =
let square x = x *. x in
let (x1,y1) = p1 in
let (x2,y2) = p2 in
sqrt (square (x2 -. x1) +. square (y2 -. y1))

(x2, y2) is an example of a pattern – a pattern for tuples.

So let declarations can contain patterns just like match statements

The difference is that a match allows you to consider multiple different data shapes

25

Recall the Distance Function

type point = float * float

let distance (p1:point) (p2:point) : float =
let square x = x *. x in
match p1 with
| (x1,y1) ->

let (x2,y2) = p2 in
sqrt (square (x2 -. x1) +. square (y2 -. y1))

There is only 1 possibility when matching a pair

26

Recall the Distance Function

type point = float * float

let distance (p1:point) (p2:point) : float =
let square x = x *. x in
match p1 with
| (x1,y1) ->

match p2 with
| (x2,y2) ->

sqrt (square (x2 -. x1) +. square (y2 -. y1))

We can nest one match expression inside another.
(We can nest any expression inside any other, if the expressions have the
right types)

27

Better Style: Complex Patterns

type point = float * float

let distance (p1:point) (p2:point) : float =
let square x = x *. x in
match (p1, p2) with
| ((x1,y1), (x2, y2)) ->
sqrt (square (x2 -. x1) +. square (y2 -. y1))

Pattern for a pair of pairs: ((variable, variable), (variable, variable))
All the variable names in the pattern must be different.

we built a pair of pairs

28

Better Style: Complex Patterns

type point = float * float

let distance (p1:point) (p2:point) : float =
let square x = x *. x in
match (p1, p2) with
| (p3, p4) ->
let (x1, y1) = p3 in
let (x2, y2) = p4 in
sqrt (square (x2 -. x1) +. square (y2 -. y1))

A pattern must be consistent with the type of the expression between match … with
We use (p3, p4) here instead of ((x1, y1), (x2, y2))

we built a pair of pairs

29

Pattern-matching in function parameters

type point = float * float

let distance ((x1,y1):point) ((x2,y2):point) : float =
let square x = x *. x in
sqrt (square (x2 -. x1) +. square (y2 -. y1))

Function parameters are patterns too!

30

What’s the best style?

let distance (p1:point) (p2:point) : float =
let square x = x *. x in
let (x1,y1) = p1 in
let (x2,y2) = p2 in
sqrt (square (x2 -. x1) +. square (y2 -. y1))

Either of these is reasonably clear and compact.
Code with unnecessary nested matches/lets is particularly ugly to read.
You'll be judged on code style in this class.

let distance ((x1,y1):point) ((x2,y2):point) : float =
let square x = x *. x in
sqrt (square (x2 -. x1) +. square (y2 -. y1))

31

What’s the best style?

This is how I'd do it ... the types for tuples + the tuple patterns are a little
ugly/verbose ... but for now in class, use the explicit type annotations.
We will loosen things up later in the semester.

let distance (x1,y1) (x2,y2) =
let square x = x *. x in
sqrt (square (x2 -. x1) +. square (y2 -. y1))

32

Combining patterns

type point = float * float

(* returns a nearby point in the graph if one exists *)
nearby : graph -> point -> point option

let printer (g:graph) (p:point) : unit =
match nearby g p with
| None -> print_string "could not find one\n"
| Some (x,y) ->

print_float x;
print_string ", ";
print_float y;
print_newline();

33

Other Patterns
Constant values can be used as patterns

let small_prime (n:int) : bool =
match n with
| 2 -> true
| 3 -> true
| 5 -> true
| _ -> false

let iffy (b:bool) : int =
match b with
| true -> 0
| false -> 1

the underscore pattern
matches anything
it is the "don't care" pattern

34

Exercises
Exercise 1: What is the type of foo below? Of bar? (bar is used but isn’t shown)

Exercise 2: Consider these two types:

Do they contain the same “amount” of information?
Write a function to convert data with type t to type s.
And another function to convert data with type s back to type t.
What happens?
Explain when a program you write might use s instead of t and vice versa.

35

let foo (a,b,c) d =
match bar a with
| (_, Some x) -> if x then None else Some d
| ((x,y), None) -> if a + b < 17 then Some (x ^ “hi”) else Some y

type t = (bool * bool) option
type s = (bool option) * (bool option)

