Tuples

Speaker: David Walker
COS 326 .
Princeton University

L

/ N
/
slides copyright 2020 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Tuples

A tuple is a fixed, finite, ordered collection of values

Tuples

A tuple is a fixed, finite, ordered collection of values

Some examples with their types:

(1, 2) - int * int
("hello", 7 + 3, true) : string * int * bool
('a', ("hello", "goodbye")) : char * (string * string)

Tuples

To use a tuple, we extract its components

General case:

let (idl, 1id2, .., 1dn) = el in eZ

Tuples

To use a tuple, we extract its components

General case:

let (idl, id2, .., idn) = el in e2
A concrete example:
let (x,y) = (2,4) 1n X + X + vy

Evaluating Tuple Expressions

let (x,y) = (2,4) 1n X + X + vy

Evaluating Tuple Expressions

—> 2 + 2 + 4

substitute!

Evaluating Tuple Expressions

substitute!

—> 2 + 2 + 4

Rules for Typing Tuples

ifel:tl ande2:t2
then (el, e2) : t1 * t2

[Rules for Typing Tuples

ifel:tl ande2:t2
then (el, e2) : t1 * t2

if el :tl *t2 then
x1:tland x2 :t2
inside the expression e2

\

T
let (x1,x2) = el in

e?

e

overall expression
takes on the type of e2

DEVELOPING PROGRAMS

[Distance between two points

(x1, y1)

c2=a?+b?

Problem:
* A point is represented as a pair of floating point values.
* Write a function that takes in two points as arguments and returns

the distance between them as a floating point number

d \

Writing Functions Over Typed Data

Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types

3. Write down some examples (in a comment)

13

Writing Functions Over Typed Data

Steps to writing functions over typed data:

1.

2.
3.
4

Write down the function and argument names
Write down argument and result types

Write down some examples (in a comment)
Deconstruct input data structures

 the argument types suggests how to do it
Build new output values
 the result type suggests how you do it

14

Writing Functions Over Typed Data

Steps to writing functions over typed data:

1.

2.
3.
4

6.

Write down the function and argument names
Write down argument and result types

Write down some examples (in a comment)
Deconstruct input data structures

 the argument types suggests how to do it
Build new output values

 the result type suggests how you do it

Clean up by identifying repeated patterns
 define and reuse helper functions
 your code should be elegant and easy to read

15

16

Writing Functions Over Typed Data

Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures
 the argument types suggests how to do it
5. Build new output values
 the result type suggests how you do it

6. Clean up by identifying repeated patterns
 define and reuse helper functions
* your code should be elegant and easy to read

Types help structure your thinking about how to write programs. C 19)

N V4

[Distance between two points

a type abbreviation (x1, y1)

N
type point = float * float

)

17

[Distance between two points

(x1, y1)

type point = float * float

let distance (pl:point) (p2:point) : float =

N\

write down function name
argument names and types

4 O\

4 \

[Distance between two points

(x1, y1)

examples

type point = float * float

distance (0.0,0.0) (0.0,1.0) == 1.0
distance (0.0,0.0) (1.0,1.0) == sqgrt(1.0 + 1.0)

from the picture:
distance (x1,yl) (x2,y2) == sgrt(a”2 + b"2)
)

b S R . -

let distance (pl:point) (pZ2:point) : float =

4 S\

19

[Distance between two points

(x1, y1)

type point = float * float
let distance (pl:point) (pZ2:point) : float =
let (x1,yl) = pl in
let (x2,y2) = p2 in <
deconstruct
function inputs

)

20

[Distance between two points

(x1, y1)

type point = float * float

let distance (pl:point) (pZ2:point) : float =

let (x1,yl) = pl in

let (x2,y2) = p2 in compute

sgqrt ((x2 -. x1) *. (x2 -. x1) +. function
(y2 —-. yl) *. (y2 —-. yl))

notice operators on

floats have a "." in them

4 . \\
T/LAA

[Distance between two points

(x1, y1)

type point = float * float

let distance (pl:point) (pZ2:point) : float =
let square x = x *. x 1n
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in
sgqrt (square (x2 -. x1)) +.
square (y2 —-. yl))

define helper functions to
avoid repeated code

7T O\

23

[Distance between two points

(x1, y1)

type point = float * float

let distance (x1,vyl) (x2,y2) =
let square x = x *. X 1n
sgqrt (square (x2 -. x1) +. s

are (y2 -. vyl))

use tuple patterns
in function arguments
if you'd like

ﬂﬁ\
AN\
F/ sl

[Distance between two points

(x1, y1)

type point = float * float

let distance ((x1,yl):point) ((x2,y2):point) : float =
let square x = x *. X 1n
sgrt (square (x2 -. x1) +. square (y2\-. vyl))

type annotations
can be included

ﬂﬁ\
N\
F/ sl

24

25

[Distance between two points

type point = float * float
let distance (pl:point)
let square x =
let (x1,vyl)
let (x2,y2) =
sgrt (square (x2 -.

X *. X 1n

let ptl = (2.0,3.0)
let pt2 = (0.0,1.0)

let distl?2 distance ptl pt2
\

(x1, y1)

(p2:point)

square

(y2 -.

v1))

/| N

).

implement some tests

MORE TUPLES

Tuples

Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

27

Tuples

Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

Here's a tuple with 3 fields:

(4.0, 5, "hello") : float * int * string

28

Tuples

Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

Here's a tuple with 3 fields:
(4.0, 5, "hello") : float * int * string
Here's a tuple with 4 fields:

(4.0, 5, "hello", 55) : float * int * string * int

29

Tuples

Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

Here's a tuple with 3 fields:

(4.0, 5, "hello") : float * int * string
Here's a tuple with 4 fields:

(4.0, 5, "hello", 55) : float * int * string * int
Here's a tuple with O fields:

() : unit

30

Unit

Why is it useful to have a tuple with zero fields?

31

Unit

Why is it useful to have a tuple with zero fields?

Every expression in OCaml returns some value

We need a value to return when we call a function that
doesn’t return any data ...

... but what good is a function that returns no data?

32

Unit

Why is it useful to have a tuple with zero fields?
* Every expression in OCaml returns some value

e We need a value to return when we call a function that
doesn’t return any data ...

e ...but what good is a function that returns no data?

Some functions have effects, which do their work:

* Functions that print to the terminal:

(print_string "hello world\n") : unit

33

Unit

Why is it useful to have a tuple with zero fields?
* Every expression in OCaml returns some value

e We need a value to return when we call a function that
doesn’t return any data ...

e ...but what good is a function that returns no data?

Some functions have effects, which do their work:
* Functions that print to the terminal:

(print_string "hello world\n") : unit

* Functions that create a sound, take a picture, or use a device
* Functions that raise an exception
* Functions that mutate a data structure B

34

35

Records

Records are a lot like tuples. It’s just that they have named fields.

Having named fields (records rather than tuples) often makes it
easier to understand a program, especially when there are more

than just 2 or 3 fields in a structure.

36

Records

Records are a lot like tuples. It’s just that they have named fields.

Having named fields (records rather than tuples) often makes it
easier to understand a program, especially when there are more
than just 2 or 3 fields in a structure.

An example:
type name = {first:string; last:string;}
let my name = {first=%"David”; last=“Walker”;}

let to string (n:name) = n.last ~ ", " ~ n.first

37

Records

Records are a lot like tuples. It’s just that they have named fields.

Having named fields (records rather than tuples) often makes it
easier to understand a program, especially when there are more

than just 2 or 3 fields in a structure.

An example:

type name = {first:string; last:string;}
let my name = {first=%"David”; last=“Walker”;}

let to string (n:name) = n.last ~ ", " ~ n.first

Note: Records come with several other useful features, like
functional updates via “with expressions.” Google them for
yourselves or see Real World OCaml for more info.

WRAP-UP

Writing Functions Over Typed Data

Steps to writing functions over typed data:

1.

ook W

6.

Write down the function and argument names
Write down argument and result types

Write down some examples (in a comment)
Deconstruct input data structures

Build new output values

Clean up by identifying repeated patterns

For tuple types:

— when the input has type t1 * t2

e use let (x,y) = ... to deconstruct

— when the output has type t1 * t2

e use (el, e2) to construct

We will see this paradigm repeat itself over and over

39

Exercise

What error do you get when you try to compile this file? (Type itin.) Why?

type 1tem = {
number: 1int;
name: string;

type contact = {
name: string*string; (* first and last name ¥*)

phone: phone;
let get name x = x.name

let myphone = {number=122; name="iphone"; }

let = print endline (get name myphone)

40

