
Tuples

Speaker: David Walker
COS 326

Princeton University

slides copyright 2020 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

1

A tuple is a fixed, finite, ordered collection of values

Tuples
2

A tuple is a fixed, finite, ordered collection of values

Some examples with their types:

Tuples

(1, 2) : int * int

("hello", 7 + 3, true) : string * int * bool

('a', ("hello", "goodbye")) : char * (string * string)

3

To use a tuple, we extract its components

General case:

Tuples

let (id1, id2, …, idn) = e1 in e2

4

Tuples

let (id1, id2, …, idn) = e1 in e2

let (x,y) = (2,4) in x + x + y

5

To use a tuple, we extract its components

General case:

A concrete example:

Evaluating Tuple Expressions
6

let (x,y) = (2,4) in x + x + y

Evaluating Tuple Expressions

substitute!

7

let (x,y) = (2,4) in x + x + y

2 + 2 + 4 -->

Evaluating Tuple Expressions

substitute!

8

let (x,y) = (2,4) in x + x + y

2 + 2 + 4

4 + 4

8

-->

-->

-->

Rules for Typing Tuples
9

if e1 : t1 and e2 : t2
then (e1, e2) : t1 * t2

Rules for Typing Tuples

let (x1,x2) = e1 in

e2

if e1 : t1 * t2 then
x1 : t1 and x2 : t2
inside the expression e2

overall expression
takes on the type of e2

10

if e1 : t1 and e2 : t2
then (e1, e2) : t1 * t2

DEVELOPING PROGRAMS

11

Distance between two points

c2 = a2 + b2
(x1, y1)

(x2, y2)

a

b
c

Problem:
• A point is represented as a pair of floating point values.
• Write a function that takes in two points as arguments and returns
the distance between them as a floating point number

12

Writing Functions Over Typed Data
Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)

13

Writing Functions Over Typed Data
Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures

• the argument types suggests how to do it
5. Build new output values

• the result type suggests how you do it

14

Writing Functions Over Typed Data
Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures

• the argument types suggests how to do it
5. Build new output values

• the result type suggests how you do it
6. Clean up by identifying repeated patterns

• define and reuse helper functions
• your code should be elegant and easy to read

15

Writing Functions Over Typed Data
Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures

• the argument types suggests how to do it
5. Build new output values

• the result type suggests how you do it
6. Clean up by identifying repeated patterns

• define and reuse helper functions
• your code should be elegant and easy to read

Types help structure your thinking about how to write programs.

16

Distance between two points

type point = float * float

a type abbreviation (x1, y1)

(x2, y2)

a

b
c

17

Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =

write down function name
argument names and types

(x1, y1)

(x2, y2)

a

b
c

18

Distance between two points

type point = float * float

(* distance (0.0,0.0) (0.0,1.0) == 1.0
* distance (0.0,0.0) (1.0,1.0) == sqrt(1.0 + 1.0)
*
* from the picture:
* distance (x1,y1) (x2,y2) == sqrt(a^2 + b^2)
*)

let distance (p1:point) (p2:point) : float =

(x1, y1)

(x2, y2)

a

b
cexamples

19

Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =

let (x1,y1) = p1 in
let (x2,y2) = p2 in
...

deconstruct
function inputs

(x1, y1)

(x2, y2)

a

b
c

20

Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =

let (x1,y1) = p1 in
let (x2,y2) = p2 in
sqrt ((x2 -. x1) *. (x2 -. x1) +.

(y2 -. y1) *. (y2 -. y1))

compute
function
results

notice operators on
floats have a "." in them

(x1, y1)

(x2, y2)

a

b
c

21

Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =
let square x = x *. x in
let (x1,y1) = p1 in
let (x2,y2) = p2 in
sqrt (square (x2 -. x1)) +.

square (y2 -. y1))

define helper functions to
avoid repeated code

(x1, y1)

(x2, y2)

a

b
c

22

Distance between two points

type point = float * float

let distance (x1,y1) (x2,y2) =
let square x = x *. x in
sqrt (square (x2 -. x1) +. square (y2 -. y1))

use tuple patterns
in function arguments
if you’d like

(x1, y1)

(x2, y2)

a

b
c

23

Distance between two points

type point = float * float

let distance ((x1,y1):point) ((x2,y2):point) : float =
let square x = x *. x in
sqrt (square (x2 -. x1) +. square (y2 -. y1))

type annotations
can be included

(x1, y1)

(x2, y2)

a

b
c

24

Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =
let square x = x *. x in
let (x1,y1) = p1 in
let (x2,y2) = p2 in
sqrt (square (x2 -. x1) +. square (y2 -. y1))

let pt1 = (2.0,3.0)
let pt2 = (0.0,1.0)
let dist12 = distance pt1 pt2

implement some tests

(x1, y1)

(x2, y2)

a

b
c

25

MORE TUPLES

26

Tuples
Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

27

Tuples
Here's a tuple with 2 fields:

Here's a tuple with 3 fields:

(4.0, 5.0) : float * float

(4.0, 5, "hello") : float * int * string

28

Tuples
Here's a tuple with 2 fields:

Here's a tuple with 3 fields:

Here's a tuple with 4 fields:

(4.0, 5.0) : float * float

(4.0, 5, "hello") : float * int * string

(4.0, 5, "hello", 55) : float * int * string * int

29

Tuples
Here's a tuple with 2 fields:

Here's a tuple with 3 fields:

Here's a tuple with 4 fields:

Here's a tuple with 0 fields:

(4.0, 5.0) : float * float

(4.0, 5, "hello") : float * int * string

(4.0, 5, "hello", 55) : float * int * string * int

30

() : unit

Unit
Why is it useful to have a tuple with zero fields?

31

Unit
Why is it useful to have a tuple with zero fields?
• Every expression in OCaml returns some value
• We need a value to return when we call a function that

doesn’t return any data …
• … but what good is a function that returns no data?

32

Unit
Why is it useful to have a tuple with zero fields?
• Every expression in OCaml returns some value
• We need a value to return when we call a function that

doesn’t return any data …
• … but what good is a function that returns no data?

Some functions have effects, which do their work:
• Functions that print to the terminal:

(print_string "hello world\n") : unit

33

Unit
Why is it useful to have a tuple with zero fields?
• Every expression in OCaml returns some value
• We need a value to return when we call a function that

doesn’t return any data …
• … but what good is a function that returns no data?

Some functions have effects, which do their work:
• Functions that print to the terminal:

• Functions that create a sound, take a picture, or use a device
• Functions that raise an exception
• Functions that mutate a data structure

(print_string "hello world\n") : unit

34

Records
Records are a lot like tuples. It’s just that they have named fields.

Having named fields (records rather than tuples) often makes it
easier to understand a program, especially when there are more
than just 2 or 3 fields in a structure.

35

Records
Records are a lot like tuples. It’s just that they have named fields.

Having named fields (records rather than tuples) often makes it
easier to understand a program, especially when there are more
than just 2 or 3 fields in a structure.

36

type name = {first:string; last:string;}

let my_name = {first=“David”; last=“Walker”;}

let to_string (n:name) = n.last ^ ", " ^ n.first

An example:

Records
Records are a lot like tuples. It’s just that they have named fields.

Having named fields (records rather than tuples) often makes it
easier to understand a program, especially when there are more
than just 2 or 3 fields in a structure.

Note: Records come with several other useful features, like
functional updates via “with expressions.” Google them for
yourselves or see Real World OCaml for more info.

37

type name = {first:string; last:string;}

let my_name = {first=“David”; last=“Walker”;}

let to_string (n:name) = n.last ^ ", " ^ n.first

An example:

WRAP-UP

38

Writing Functions Over Typed Data
Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures
5. Build new output values
6. Clean up by identifying repeated patterns

For tuple types:
– when the input has type t1 * t2

• use let (x,y) = … to deconstruct
– when the output has type t1 * t2

• use (e1, e2) to construct

We will see this paradigm repeat itself over and over

39

Exercise
40

type item = {
number: int;
name: string;

}

type contact = {
name: string*string; (* first and last name *)
phone: phone;

}

let get_name x = x.name

let myphone = {number=122; name="iphone";}

let _ = print_endline (get_name myphone)

What error do you get when you try to compile this file? (Type it in.) Why?

