
COS 326 Functional Programming:
An elegant weapon for a more civilized age

Princeton University

slides copyright 2013-2019 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Andrew Appel David Walker

Your professors
2

Andrew Appel David Walker

Your professors
3

Andrew Appel David Walker

In 1936, Alonzo Church invented
the lambda calculus. He called
it a logic, but it was a language
of pure functions -- the world's
first programming language.

He said:

"There may, indeed, be other
applications of the system than
its use as a logic."

Alonzo Church, 1903-1995
Princeton Professor, 1929-1967

4

Indeed!

Alonzo Church
1934 -- developed lambda calculus

Alan Turing (PhD Princeton 1938)
1936 -- developed Turing machines

Programming Languages Computers

http://press.princeton.edu/chapters/s9780.pdf
Optional reading: The Birth of Computer Science at Princeton in the 1930s
by Andrew W. Appel, 2012.

5

http://assets.press.princeton.edu/chapters/s9780.pdf

A few designers of functional programming languages
6

Alonzo Church:
λ-calculus, 1934

John McCarthy
(PhD Princeton 1951)

LISP, 1958

Guy Steele & Gerry Sussman:
Scheme, 1975

LISP, 1960

7

(define
(my-max3 x y z)
(if (and (> x y) (> x z))

x
(if (> y z)

y
z))) or mother's

©
 2

00
7

xk
cd

Vastly Abbreviated FP Genealogy
LCF Theorem
Prover (70s)

Edinburgh ML

Miranda (80s)

Haskell
(90s - now)

Standard ML
(90s - now) OCaml

(90s - now)

Caml
(80s-now)

F#
(now)

LISP
(1960-now)

Scheme
(70s-now)

lazy

typed, polymorphic

untyped

Coq
(80s - now)

dependently
typed

call-by-value

Racket
(00s-now)

Scala
(00s - now)

8

Vastly Abbreviated FP Geneology
LCF Theorem
Prover (70s)

Edinburgh ML

Miranda (80s)

Haskell
(90s - now)

Standard ML
(90s - now) OCaml

(90s - now)

Caml
(80s-now)

F#
(now)

LISP
(50s-now)

Scheme
(70s-now)

lazy

typed, polymorphic

untyped

Coq
(80s - now)

dependently
typed

call-by-value

Racket
(00s-now)

Scala
(00s - now)

9

Functional Languages: Who’s using them?

F# in Visual Studio

map-reduce in their data centers

Erlang for concurrency,
Haskell for managing PHP,
OCaml for bug-finding

Haskell to
synthesize hardware

Scala for
correctness, maintainability, flexibility

www.artima.com/scalazine/articles/twitter_on_scala.html
www.infoq.com/presentations/haskell-barclays
www.janestreet.com/technology/index.html#work-functionally
msdn.microsoft.com/en-us/fsharp/cc742182
research.google.com/archive/mapreduce-osdi04.pdf
www.lightbend.com/case-studies/how-apache-spark-scala-and-functional-programming-made-hard-problems-easy-at-barclays
www.haskell.org/haskellwiki/Haskell_in_industry

Haskell
for specifying
equity derivatives

mathematicians
Coq (re)proof of
4-color theorem

10

COURSE LOGISTICS

11

Course Staff
12

Professors

Andrew Appel David Walker

Preceptors

Dmitry ParamonovAkash Gaonkar Joomy Korkut John Li Danqi LiaoDevon Loehr

Resources
• coursehome: http://www.cs.princeton.edu/~cos326
• Communication

– Ed: https://us.edstem.org/courses/2192/discussion/
• Lecture schedule and readings:

– $(coursehome)/lectures.php for schedule and slides
– Lectures this semester will be prerecorded videos
– Join the professors for (optional) “lecture watching party”

• Tues-Thurs 11am; ask questions of your profs during lecture!
• Zoom link on Ed; authenticate with your princeton.edu login

• Assignments:
– $(coursehome)/assignments.php

• Precepts: (one hour per week)
– Precept attendance is mandatory.

• Install OCaml: $(coursehome)/resources.php

13

https://us.edstem.org/courses/2192/discussion/

A Typical Week
Monday

– Assignment from last week due (7 assignments total)
– Your first assignment is due Monday Sept 7 at 11:59pm

Tuesday
– New assignment handed out
– video watch party for lectures at 11-12:20 on zoom (see ed)

• profs present to answer questions
– start assignment with material from lecture

Thursday
– video watch party 11-12:20

Thursday/Friday
– mandatory precept reinforces lecture content in small groups
– you may have questions for your preceptor about the

assignment

14

Collaboration Policy
The COS 326 collaboration policy can be found here:

Read it in full prior to beginning the first assignment.

Please ask questions whenever anything is unclear, at any time
during the course.

http://www.cs.princeton.edu/~cos326/info.php#collab

15

Sample README.txt (abridged)
Netids (include all members of group, if parternering):

[list here]

In doing this homework I used the following sources:

1. Sources I don't need to mention [see notes 1 and 4]
2. Authorized sources [see notes 2 and 4]

[list here]
3. Unauthorized sources [see notes 3 and 4]

[list here]

This paper represents my own work in accordance with
University regulations.

Signed, [your name(s):]

--
NOTE 1: Sources you don't need to mention
this semester's lectures and precepts, the course web
site, the assignment handout (download), Real World
OCaml, and the OCaml manual.

NOTE 2: Authorized sources include:
professors and preceptors, advice from other students

(but not looking at their solutions); other books, and
(within reason) web sites such as stackoverflow.com.

16

NOTE 3: "Why would I list an unauthorized source?"
Using an unauthorized source without citing it is an

Academic Violation under Princeton University's
disciplinary code, and can result in suspension from the
University.

Using an unauthorized source and citing it clearly is
"merely" a violation of this homework's instructions, and
can result in (at most) getting a zero on this homework.

Unauthorized sources include, at least: other people's
solutions to these (or similar) homework problems.

NOTE 4. If you paste in code from from these sites, you
should clearly cite it at the point of use, in accordance
with Section 2.4.6 of RRR for "direct quotation or
extensive paraphrase".

Please limit the amount of this that you do in accordance
with the principle that the purpose of these homeworks
is so that you can learn how to do things yourself.

Course Textbook

http://realworldocaml.org/

17

Exams
Midterm
• Thursday after your (Sat→Tues) midterm break

Final
• During exam period in December
• The final is not “cumulative” over the whole

semester, it covers just “equational reasoning”

18

Assignment 0

Download and install OCaml and get emacs or your favorite
editor set up to process OCaml code
(syntax highlighting; type checking)

See the Resources Page for install instructions on your platform:

http://www.cs.princeton.edu/~cos326/resources.php

19

http://www.cs.princeton.edu/courses/archive/fall13/cos326/resources.php

Thinking Functionally

imperative code:

temp = pair.x;
pair.x = pair.y;
pair.y = temp;

20

commands modify or change an
existing data structure (like pair)

pure, functional code:

let (x,y) = pair in
(y,x)

you analyze existing data (like pair)
and you produce new data (y,x)

Thinking Functionally

imperative code:

• outputs are irrelevant!
• output is not function of input
• data properties change
• unrepeatable
• parallelism hidden
• harder to test
• harder to compose

pure, functional code:

• outputs are everything!
• output is function of input
• data properties are stable
• repeatable
• parallelism apparent
• easier to test
• easier to compose

temp = pair.x;
pair.x = pair.y;
pair.y = temp;

let (x,y) = pair in
(y,x)

21

This simple switch in perspective can change the way you
think

about programming and problem solving.

22

Have fun!

Let's make this an amazing semester!

23

Andrew Appel David Walker

Dmitry ParamonovAkash Gaonkar Joomy Korkut John Li Danqi LiaoDevon Loehr

	Slide Number 1
	Your professors
	Your professors
	Slide Number 4
	Slide Number 5
	A few designers of functional programming languages
	LISP, 1960
	Vastly Abbreviated FP Genealogy
	Vastly Abbreviated FP Geneology
	Functional Languages: Who’s using them?
	Course logistics
	Course Staff
	Resources
	A Typical Week
	Collaboration Policy
	Sample README.txt (abridged)
	Course Textbook
	Exams
	Assignment 0
	Thinking Functionally
	Thinking Functionally
	This simple switch in perspective can change the way you �think �about programming and problem solving.
	Slide Number 23

