
2-3 Trees

COS 326
Assignment #5

Princeton University

slides copyright 2020 David Walker and Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes

2-3 Trees

2

X X Y

< X

Leaf:

2-node:

> X < X > Y> X
< Y

3-node:

The height of both subtrees
must be the same

The height of all subtrees
must be the same

2-3 Tree Example

3

8

4 7 12

2-3 Tree Non-Example

4

8

4 7 12

15

unequal subtree height!

2-3 Tree Non-Example

5

8

12

out of order keys!

4 9

2-3 Tree Non-Examples

6

8

4 7 122

1-4-7 has too many keys – not a 3-node!

INSERT

How to Insert

8

4 7 12

insert 15 into:

How to Insert

8

4 7 12

insert 15 into:

15

compare 15 to the root node

How to Insert

8

4 7 12

insert 15 into:

15

recursively insert into the right subtree

How to Insert

8

4 7 12

insert 15 into:

15

reach a leaf node

How to Insert

8

4 7 12

insert 15 into:

15

create a new subtree with 15

How to Insert

8

4 7 12

insert 15 into:

15

Note:
• The height of the subtree has grown by 1
• It grew from height 0 (a leaf) to height 1 (tree with one node)
• If we include the new subtree in node 12 where the old

subtree was then we will have children of uneven height.

Return from recursive insert

How to Insert

8

4 7 12

insert 15 into:

15

Note:
• The height of the new subtree with root 12-15 is the same as

the height of the original subtree that just contained 12

Solution: Turn a 2-node into a 3-node

How to Insert

8

4 7 12

insert 15 into:

15

Note:
• the height of the 12-15 node is the same as the height of the original subtree of 8
• that means the new node also has the same height as the 4-7 child of 8
• since the heights of the two children are the same, the 12-15 node may be

included directly as a child of the 8-node

Return from recursive call to insert from 8-node

How to Insert

8

4 7 12

insert 15 into:

15

We are done!

Key idea: When returning from a call to insert, return a boolean "grow."
Invariant:
• if grow is true, the height of the tree increased by 1
• if grow is false, the height of the tree stayed the same

How to Insert

8

4 7 12

insert 2 into:

15

We are done!

How to Insert

8

4 7 12

insert 2 into:

15

Compare 2 with the root

2

How to Insert

8

4 7
12

insert 2 into:

15

Recursively insert 2 into the 4-7 subtree

2

How to Insert

8

4 7
12

insert 2 into:

15

Recursively insert 2 into the Leaf

2

How to Insert

8

4 7
12

insert 2 into:

15

Create new 2-node

2

How to Insert

8

4 7
12

insert 2 into:

15

2

Note:
• The height of the subtree has grown by 1
• It grew from height 0 (a leaf) to height 1 (tree with one node)
• If we include the new subtree in node 12 where the old

subtree was then we will have children of uneven height.

Return from recursive insert

How to Insert

8

4 7
12

insert 2 into:

15

2

But, we can't turn a 3-node with 4-7 into a 4-node with 2-4-7!

Solution:
• turn the 3-node into a 2-node, with 2 2-node children

Return from recursive insert

How to Insert

8

4

7

12

insert 2 into:

15

2

new subtree created. return from recursive call
note:
• this new subtree has grown by 1
• report that when returning from the recursive call

How to Insert

84

7 12

insert 2 into:

152

new subtree has grown by one, but we can include it in the
root because the root is a 2-node.

all paths from the root to the leaves now have the same length.

DELETE

How to Delete

84

7 12

delete 12 in:

152

new subtree has grown by one, but we can include it in the
root because the root is a 2-node.

all paths from the root to the leaves now have the same length.

How to Delete

84

7 12

delete 12 in:

152

compare with root

12

How to Delete

84

7
12

delete 12 in:

15
2

found 12 in terminal 3-node

12

How to Delete

84

7

delete 12 in:

15
2

convert 3-node to 2-node

How to Delete

84

7

delete 12 in:

15
2

return from recursive call
• report that height of new subtree is the same height as old subtree

How to Delete

84

7

delete 12 in:

152

overall tree has 3 children of the same height
we are done

(if we weren't done, recursively return from delete reporting no change in height)

How to Delete

84

7

delete 2 in:

152

overall tree has 3 children of the same height
we are done

2

How to Delete

84

7

delete 2 in:

152

found 2 in terminal 2-node

2

How to Delete

84

7

delete 2 in:

15

Delete element, creating shorter tree

How to Delete

84

7

delete 2 in:

15

return from recursive call to delete
• report current tree is 1 shorter than height of original tree
• parent is 3-node
• has 2-node as another child

How to Delete

8

4 7

delete 2 in:

15

rotate element of 3-node from parent to sibling
attach node to sibling

4

How to Delete

8

4 7

delete 2 in:

15

return
(done in this case)

How to Delete

8

4 7

delete 2 in:

15

return
(done in this case)

How to Delete

YW

More generally, when returning with a tree of decreased height.
Case: Parent is 3-node; Sibling is 2-node.

< W > Y
> W
< Y

h-1
h

Y

W

< W
> Y

> W
< Yh-1

h

X

X

h

How to Delete

YV

< V
> Y> W

< X
h-1

h

YW

< V
> Yh-1

h

X

X

h

W

More generally, when returning with a tree of decreased height.
Case: Parent is 3-node; Sibling is 3-node.

V

> V
< W

> X
< Y

> V
< Y

> V
< Y

> V
< Y

How to Delete

X

More generally, when returning with a tree of decreased height.
Case: Parent is 2-node; Sibling is 2-node.

< X
h-1

h

< W
h-1

h

> X
< Y > Y

Y

X

> X
< Y > Y

Y

height of new tree is one less that original

h + 1

How to Delete Non-terminal Nodes?

8

6 12

5 7 11 15

Delete 8 in:

How to Delete Non-terminal Nodes?

8

6 12

5 7 11 15

Delete 8 in:

1. Find the node's immediate successor S, which will be in a terminal node.
2. Replace current node's value with S
3. Continue the algorithm, deleting the occurrence of S in the subtree

How to Delete Non-terminal Nodes?

8

6 12

5 7 11 15

Delete 8 in:

1. Find the node's immediate successor S, which will be in a terminal node.
2. Replace current node's value with S
3. Continue the algorithm, deleting the occurrence of S in the subtree

search for successor (find 11)

How to Delete Non-terminal Nodes?

11

6 12

5 7 11 15

Delete 8 in:

1. Find the node's immediate successor S, which will be in a terminal node.
2. Replace current node's value with S
3. Continue the algorithm, deleting the occurrence of S in the subtree

replace 8 with 11

How to Delete Non-terminal Nodes?

11

6 12

5 7 11 15

Delete 8 in:

1. Find the node's immediate successor S, which will be in a terminal node.
2. Replace current node's value with S
3. Continue the algorithm, deleting the occurrence of S in the subtree

delete 11 in subtree using deletion
algorithm for terminal nodes

How to Delete Non-terminal Nodes?

11

6

125 7 15

Delete 8 in:

1. Find the node's immediate successor S, which will be in a terminal node.
2. Replace current node's value with S
3. Continue the algorithm, deleting the occurrence of S in the subtree

delete 11 in subtree using deletion
algorithm for terminal nodes

How to Delete Non-terminal Nodes?

116

125 7 15

Delete 8 in:

1. Find the node's immediate successor S, which will be in a terminal node.
2. Replace current node's value with S
3. Continue the algorithm, deleting the occurrence of S in the subtree

delete 11 in subtree using deletion
algorithm for terminal nodes

OCAML IMPLEMENTATION

OCaml 2-3 Trees

type pair = key * value

type dict =
| Leaf
| Two of dict * pair * dict
| Three of dict * pair * dict * pair * dict

Valid 2-3 trees must be:
• in order
• balanced (equal height subtrees)

You will write an invariant function to check that the trees produced by
your functions are valid 2-3 trees.

This is going to help you debug your routines a lot.

The OCaml Insert Function

84

7 12 152

insert_to_tree : dict -> key -> value -> bool * dict

Key Property:

If d is a valid 2-3 tree and insert_to_tree d k v = (grow, d') then
• d' is a valid 2-3 tree
• d' contains all of the elements of d as well as (k,v)
• if grow then height(d') = height(d) + 1,
• else height(d') = height(d)

The OCaml Remove Function

84

7 12 152

remove_from_tree : dict -> key -> bool * dict

Key Property:

If d is a valid 2-3 tree and remove_from_tree d k = (shrink, d') then
• d' is a valid 2-3 tree
• d' contains all of the elements of d except the one for k
• if shrink then height(d') = height(d) - 1,
• else height(d') = height(d)

A Possible Implementation Strategy

8

6 12

5 7 11 15

1. Implement the 2-3 invariant to help you debug
2. Implement insert
3. Implement remove for terminal nodes
4. Implement remove for internal nodes

