2-3 Trees

COS 326
Assignment #5
Princeton University

/| Q

/ QA N\
L (9))
slides copyright 2020 David Walker and Andrew W. Agpel
permission granted to reuse these slides for non-commercial educational purposes

2-3 Trees

Leaf:
]
2-node: 3-node:
X X | Y
X X > X
< > <X . >Y
The height of both subtrees The height of all subtrees
must be the same must be the same

C

2-3 Tree Example

8

12

o
S

\
-

2-3 Tree Non-Example

8

4

7

l

.
.

\

.

unequal subtree height!

12

15

2-3 Tree Non-Example

T

out of order keys!

2-3 Tree Non-Examples

-/-/g\i

1-4-7 has too many keys — not a 3-node!

INSERT

How to Insert

insert 15 into:

8

12

S T
- ow

How to Insert

insert 15 into:

15"1

8

12

o
S

\
-

compare 15 to the root node

How to Insert

insert 15 into:

8 15’1

12

d ~
- S~

L L] L {

recursively insert into the right subtree

How to Insert

insert 15 into:

o
S

reach a leaf node

12

-

e

How to Insert

insert 15 into:

12

o
.

L] u {

create a new subtree with 15

15

How to Insert

insert 15 into:

12

o
/ S

L u L {

Return from recursive insert
Note:

The height of the subtree has grown by 1

It grew from height O (a leaf) to height 1 (tree with one node)
If we include the new subtree in node 12 where the old
subtree was then we will have children of uneven height.

15

How to Insert

insert 15 into:

12

15

/ ~
- - - i/
Solution: Turn a 2-node into a 3-node
Note:

* The height of the new subtree with root 12-15 is the same as

the height of the original subtree that just contained 12

-

How to Insert

insert 15 into:

8 “—

15

o
/ S

. . . {é

Return from recursive call to insert from 8-node

Note:
the height of the 12-15 node is the same as the height of the original subtree of 8
that means the new node also has the same height as the 4-7 child of 8

since the heights of the two children are the same, the 12-15 node may be

included directly as a child of the 8-node

N

How to Insert

insert 15 into:

12 | 15

e
: = o= o= om

We are done!

Key idea: When returning from a call to insert, return a boolean "grow.'

Invariant:
e if grow is true, the height of the tree increased by 1

* if grow is false, the height of the tree stayed the same L

How to Insert

insert 2 into:

8

o
S

We are done!

12

15

- =

How to Insert

insert 2 into:

"
.~

P e & a

15

Compare 2 with the root

How to Insert

insert 2 into:

15

/ 12
- \. i/é \-

Recursively insert 2 into the 4-7 subtree

How to Insert

insert 2 into:

15

/ 12
~ - =

Recursively insert 2 into the Leaf

How to Insert

insert 2 into:

.

Create new 2-node

12

15

- =

How to Insert]

insert 2 into:

15

i

.

Return from recursive insert

| Note:
* The height of the subtree has grown by 1
* |t grew from height O (a leaf) to height 1 (tree with one node)
* If we include the new subtree in node 12 where the old |
subtree was then we will have children of uneven heién %) 3‘

How to Insert

insert 2 into:

15

i

E
a

Return from recursive insert
| But, we can't turn a 3-node with 4-7 into a 4-node with 2-4-7!

Solution:

e turn the 3-node into a 2-node, with 2 2-node children
L

How to Insert

1 == =
2 \7
\
L L |

new subtree created. return from recursive call
note:

* this new subtree has grown by 1

* report that when returning from the recursive call

How to Insert

insert 2 into:

new subtree has grown by one, but we can include it in the
root because the root is a 2-node.

all paths from the root to the leaves now have the same length. -

DELETE

How to Delete

delete 12 in:

new subtree has grown by one, but we can include it in the
root because the root is a 2-node.

all paths from the root to the leaves now have the same length. -

How to Delete

delete 12 in:

compare with root

12

15

How to Delete

delete 12 in:

TS

o

15

J

found 12 in terminal 3-node

How to Delete

delete 12 in:

convert 3-node to 2-node

15

How to Delete

delete 12 in:

\ 5\

return from recursive call
* report that height of new subtree is the same height as old subtree

[How to Delete]

delete 12 in:
4 8
2 7 15
[|]] %]

overall tree has 3 children of the same height
we are done
(if we weren't done, recursively return from delete reporting no change in heigt*'

How to Delete

delete 2 in:
2 ’1
4 8
2 7 15
] |] é

overall tree has 3 children of the same height
we are done

How to Delete

delete 2 in:

2’12/

found 2 in terminal 2-node

15

How to Delete

delete 2 in:

—

7 \1
-\- i

Delete element, creating shorter tree

How to Delete

delete 2 in:

S

return from recursive call to delete

* report current tree is 1 shorter than height of original tree
* parentis 3-node

* has 2-node as another child

How to Delete

O
-/-\i é\-

rotate element of 3-node from parent to sibling
attach node to sibling

How to Delete

delete 2 in:

return
(done in this case)

15

How to Delete

delete 2 in:

return
(done in this case)

15

How to Delete

More generally, when returning with a tree of decreased height.
Case: Parent is 3-node; Sibling is 2-node.

W Y

A A A

l

W X
h- > W
h-1 <W <y >Y

How to Delete

More generally, when returning with a tree of decreased height.
Case: Parent is 3-node; Sibling is 3-node.

h-1
{ <V

V Y
(/’—A> W X
>V >W > X >Y
<W <X <Y
X _
>V >V >V >Y
<Y <Y <Y

<V

How to Delete

More generally, when returning with a tree of decreased height.
Case: Parent is 2-node; Sibling is 2-node.
X

Y
h h+1
h_l{ <X :’; >Y]
|
X | v
- h
h-l{ W Zé Sy

height of new tree is one less that original

|

How to Delete Non-terminal Nodes?

Delete 8 in:

= = =

6

_—
I

12

11

15

How to Delete Non-terminal Nodes?

Delete 8 in:

/ N
N /

= = m omm mm =

1. Find the node's immediate successor S, which will be in a terminal node.
2. Replace current node's value with S
3. Continue the algorithm, deleting the occurrence of S in the subtree

How to Delete Non-terminal Nodes?

Delete 8 in:

3 search for successor (find 11)

/ N
N 7

= = m omm mm =

1. Find the node's immediate successor S, which will be in a terminal node.
2. Replace current node's value with S
3. Continue the algorithm, deleting the occurrence of S in the subtree

How to Delete Non-terminal Nodes?

Delete 8 in:

11

SN

= = =

\

replace 8 with 11

12

11

15

"

-

\

1. Find the node's immediate successor S, which will be in a terminal node.

2. Replace current node's value with S
3. Continue the algorithm, deleting the occurrence of S in the subtree

How to Delete Non-terminal Nodes?

Delete 8 in:

delete 11 in subtree using deletion
11 algorithm for terminal nodes

SN

= = = omm o mm =

1. Find the node's immediate successor S, which will be in a terminal node.
2. Replace current node's value with S
3. Continue the algorithm, deleting the occurrence of S in the subtree

How to Delete Non-terminal Nodes?

Delete 8 in:

delete 11 in subtree using deletion

/ 11 algorithm for terminal nodes
6 \
5 7 12 | 15

= mom mm m

1. Find the node's immediate successor S, which will be in a terminal node.
2. Replace current node's value with S
3. Continue the algorithm, deleting the occurrence of S in the subtree

How to Delete Non-terminal Nodes?

Delete 8 in:

delete 11 in subtree using deletion
algorithm for terminal nodes

6 | 11

, S~ T —

5 7 12 | 15

- = - mw om

1. Find the node's immediate successor S, which will be in a terminal node.
2. Replace current node's value with S
3. Continue the algorithm, deleting the occurrence of S in the subtree

OCAML IMPLEMENTATION

OCaml 2-3 Trees

type pair = key * value

type dict =
| Leaf
| Two of dict * pair * dict
| Three of dict * pair * dict * pair * dict

Valid 2-3 trees must be:
* inorder
* balanced (equal height subtrees)

You will write an invariant function to check that the trees produced by
your functions are valid 2-3 trees.

This is going to help you debug your routines a lot.

The OCaml Insert Function

insert_to_tree : dict -> key -> value -> bool * dict
Key Property:

If d is a valid 2-3 tree and insert_to_tree d k v = (grow, d') then
 d'isavalid 2-3 tree

» d'contains all of the elements of d as well as (k,v)

* if grow then height(d') = height(d) + 1,

* else height(d') = height(d)

\

The OCaml Remove Function

remove_from_tree : dict -> key -> bool * dict

Key Property:

If d is a valid 2-3 tree and remove_from_tree d k = (shrink, d') then

 d'isavalid 2-3 tree

e d'contains all of the elements of d except the one for k
* if shrink then height(d') = height(d) - 1,

e else height(d') = height(d)

\

15

A Possible Implementation Strategy

_—
I

= = =

1. Implement the 2-3 invariant to help you debug

2. Implement insert

\

=

12

/

11

"

3. Implement remove for terminal nodes
4. Implement remove for internal nodes

-

15

\

