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2-3 Trees
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2-3 Tree Example
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2-3 Tree Non-Example
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unequal subtree height!
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2-3 Tree Non-Example
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out of order keys!



2-3 Tree Non-Examples
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1-4-7 has too many keys — not a 3-node!
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How to Insert

insert 15 into:
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How to Insert

insert 15 into:
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compare 15 to the root node




How to Insert

insert 15 into:
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recursively insert into the right subtree




How to Insert

insert 15 into:
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reach a leaf node
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How to Insert

insert 15 into:
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create a new subtree with 15
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How to Insert

insert 15 into:
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Return from recursive insert
Note:

The height of the subtree has grown by 1

It grew from height O (a leaf) to height 1 (tree with one node)
If we include the new subtree in node 12 where the old
subtree was then we will have children of uneven height.
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How to Insert

insert 15 into:
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Solution: Turn a 2-node into a 3-node
Note:

* The height of the new subtree with root 12-15 is the same as

the height of the original subtree that just contained 12
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How to Insert

insert 15 into:
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Return from recursive call to insert from 8-node

Note:
the height of the 12-15 node is the same as the height of the original subtree of 8
that means the new node also has the same height as the 4-7 child of 8

since the heights of the two children are the same, the 12-15 node may be

included directly as a child of the 8-node
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How to Insert

insert 15 into:
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We are done!

Key idea: When returning from a call to insert, return a boolean "grow.'

Invariant:
e if grow is true, the height of the tree increased by 1

* if grow is false, the height of the tree stayed the same L




How to Insert

insert 2 into:
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How to Insert

insert 2 into:
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Compare 2 with the root



How to Insert

insert 2 into:
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Recursively insert 2 into the 4-7 subtree



How to Insert

insert 2 into:
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Recursively insert 2 into the Leaf




How to Insert

insert 2 into:
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Create new 2-node
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How to Insert ]

insert 2 into:
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Return from recursive insert

| Note:
* The height of the subtree has grown by 1
* |t grew from height O (a leaf) to height 1 (tree with one node)
* If we include the new subtree in node 12 where the old |
subtree was then we will have children of uneven heién %) 3‘




How to Insert

insert 2 into:
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Return from recursive insert
| But, we can't turn a 3-node with 4-7 into a 4-node with 2-4-7!

Solution:

e turn the 3-node into a 2-node, with 2 2-node children
L




How to Insert
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new subtree created. return from recursive call
note:

* this new subtree has grown by 1

* report that when returning from the recursive call



How to Insert

insert 2 into:

new subtree has grown by one, but we can include it in the
root because the root is a 2-node.

all paths from the root to the leaves now have the same length. -
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How to Delete

delete 12 in:

new subtree has grown by one, but we can include it in the
root because the root is a 2-node.

all paths from the root to the leaves now have the same length. -



How to Delete

delete 12 in:

compare with root
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How to Delete

delete 12 in:
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found 12 in terminal 3-node



How to Delete

delete 12 in:

convert 3-node to 2-node
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How to Delete

delete 12 in:
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return from recursive call
* report that height of new subtree is the same height as old subtree



[ How to Delete ]

delete 12 in:
4 8
2 7 15
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overall tree has 3 children of the same height
we are done
(if we weren't done, recursively return from delete reporting no change in heigt*'




How to Delete

delete 2 in:
2 ’1
4 8
2 7 15
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overall tree has 3 children of the same height
we are done



How to Delete

delete 2 in:
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found 2 in terminal 2-node
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How to Delete

delete 2 in:
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Delete element, creating shorter tree



How to Delete

delete 2 in:

S

return from recursive call to delete

* report current tree is 1 shorter than height of original tree
* parentis 3-node

* has 2-node as another child



How to Delete
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rotate element of 3-node from parent to sibling
attach node to sibling



How to Delete

delete 2 in:

return
(done in this case)
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How to Delete

delete 2 in:

return
(done in this case)
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How to Delete

More generally, when returning with a tree of decreased height.
Case: Parent is 3-node; Sibling is 2-node.
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How to Delete

More generally, when returning with a tree of decreased height.
Case: Parent is 3-node; Sibling is 3-node.
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How to Delete

More generally, when returning with a tree of decreased height.
Case: Parent is 2-node; Sibling is 2-node.
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height of new tree is one less that original
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How to Delete Non-terminal Nodes?

Delete 8 in:
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How to Delete Non-terminal Nodes?

Delete 8 in:
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1. Find the node's immediate successor S, which will be in a terminal node.
2. Replace current node's value with S
3. Continue the algorithm, deleting the occurrence of S in the subtree




How to Delete Non-terminal Nodes?

Delete 8 in:

3 search for successor (find 11)
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1. Find the node's immediate successor S, which will be in a terminal node.
2. Replace current node's value with S
3. Continue the algorithm, deleting the occurrence of S in the subtree




How to Delete Non-terminal Nodes?

Delete 8 in:
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1. Find the node's immediate successor S, which will be in a terminal node.

2. Replace current node's value with S
3. Continue the algorithm, deleting the occurrence of S in the subtree



How to Delete Non-terminal Nodes?

Delete 8 in:

delete 11 in subtree using deletion
11 algorithm for terminal nodes
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1. Find the node's immediate successor S, which will be in a terminal node.
2. Replace current node's value with S
3. Continue the algorithm, deleting the occurrence of S in the subtree




How to Delete Non-terminal Nodes?

Delete 8 in:

delete 11 in subtree using deletion

/ 11 algorithm for terminal nodes
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1. Find the node's immediate successor S, which will be in a terminal node.
2. Replace current node's value with S
3. Continue the algorithm, deleting the occurrence of S in the subtree



How to Delete Non-terminal Nodes?

Delete 8 in:

delete 11 in subtree using deletion
algorithm for terminal nodes
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1. Find the node's immediate successor S, which will be in a terminal node.
2. Replace current node's value with S
3. Continue the algorithm, deleting the occurrence of S in the subtree




OCAML IMPLEMENTATION



OCaml 2-3 Trees

type pair = key * value

type dict =
| Leaf
| Two of dict * pair * dict
| Three of dict * pair * dict * pair * dict

Valid 2-3 trees must be:
* inorder
* balanced (equal height subtrees)

You will write an invariant function to check that the trees produced by
your functions are valid 2-3 trees.

This is going to help you debug your routines a lot.



The OCaml Insert Function

insert_to_tree : dict -> key -> value -> bool * dict
Key Property:

If d is a valid 2-3 tree and insert_to_tree d k v = (grow, d') then
 d'isavalid 2-3 tree

» d'contains all of the elements of d as well as (k,v)

* if grow then height(d') = height(d) + 1,

* else height(d') = height(d)
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The OCaml Remove Function

remove_from_tree : dict -> key -> bool * dict

Key Property:

If d is a valid 2-3 tree and remove_from_tree d k = (shrink, d') then

 d'isavalid 2-3 tree

e d'contains all of the elements of d except the one for k
* if shrink then height(d') = height(d) - 1,

e else height(d') = height(d)
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A Possible Implementation Strategy
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1. Implement the 2-3 invariant to help you debug

2. Implement insert
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3. Implement remove for terminal nodes
4. Implement remove for internal nodes
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