
Precept 2: Non-preemptive Scheduler

COS 318: Fall 2019

Project 2 Schedule

● Precept: Monday 09/30 & Tuesday

10/01,7:30pm – 8:20pm

● Design Review: Monday 10/07 &
Tuesday 10/08, 3 - 7pm

● Due: Sunday 10/13,11:55pm

Project 2 Overview

● Goal: Build a non-preemptive kernel that can

switch between different tasks (task = process

or kernel thread)

● Read the project spec for more details

● Start early

What is a Non-Preemptive Kernel?

Current running task loses CPU or running state

in the following scenarios:

1. Yield

2. Block: I/O operation, Lock (thread)

3. Exit

What is a Non-Preemptive Kernel?

What is a Non-Preemptive Kernel?

What You Need to Deal With

1. Process Control Blocks (PCBs)

2. User and KernelStack

3. Basic System CallMechanism

4. Context Switching

5. Mutual Exclusion

Assumptions

● Protected Mode: No need to worry about segment

registers again!

● Non-Preemptive Tasks: Run until they yield, block,

or exit

● Fixed Number of Tasks: Allocate per-task state

(PCB) statically in your program

● Fixed Task Stack Size

1. Process Control Block (PCB)

● Defined in kernel.h and initialized in kernel.c:_start

● What is itspurpose?

● What should be in the PCB?

- Process ID (PID)

- Stack Info

- Registers

- CPU Time

- Etc.

2. Allocating Stacks

● Allocate separate user-space stacks for each task in kernel.c:_start()

● In theory, processes have two stacks:

1. User Stack: For the process to use

2. Kernel Stack: For the kernel to use when executing system calls

on behalf of theprocess

Option: In this assignment, you can opt to use only one stack

● Kernel threads need only one stack

● 4kB per stack isenough

3. System Calls - Typically...

● So user processes can ask for kernel services

● Standard Procedure:

○ Push system call ID + arguments onto stack

○ Interrupt / trap: elevate privileges + jumps intokernel

● NOTthe case for this assignment...

3. System Calls - In this project

● User processes provided withsyslib.h

● These functions:

○ Load kernel entry point address from known location

in memory (ENTRY_POINT)

○ Push system call ID onto stack + call kernel_entry

function

3. System Calls - kernel_entry

● kernel_entryaddress stored

at ENTRY_POINT (0xf00)

● Saves registers + switchesto

kernel stack

● Does the reverse whenexiting

the kernel

4. Context Switch - Overview

● Goal: safely switch currently running task

● When does thishappen?

○ Preemptive OS: typically when the OS tells you to

○ Non-preemptive OS: when task yields or exits

4. Context Switch - Responsibilities

1. Save task state intoPCB

2. Push current PCB into ready or block queue

3. Choose new task from ready queue + pop its

PCB

4. Restore new task state + run it

4. Context Switch - Saving State

● Tasks should not care what happens while its

not running - save current state in its PCB:

○ General purpose registers (including%esp)

○ Flags

● What about the instructionpointer?

4. Context Switch - Scheduling

● Kernel must maintain:

○ Ready Queue: tasks ready to be run

○ Blocked Queue: tasks blocked on some resource

● Which task runs next?

○ Regular: round-robin EC: lowest run-time

5. Mutual Exclusion (via locks)

● Spinlock implementation is provided,you

must implement a blockinglock

○ See spec for preciserequirements

● No preemption => no race conditions *

● Exactly one correct trace

Timing context switches

● util.c:get_timer returns # cycles since boot

● Implement parts of th3 and process3

○ process3 included twice in task list - be able to

distinguish between the twoexecutions

Tips + Things to think about...

● What should you do when a kernel thread is run for

the first time?

● What state should be saved to PCB? In what order?

● Get queue working in user space

● Code and testincrementally

Design Review

(Monday, 10/08) Answer thequestions:

● Process Control Block: What will be in your PCB and what will it be

initialized to?

● Context Switching: How will you save and restore a task’s context?

Should anything special be done for the first task?

● Processes: What, if any, are the differences between threads and

processes and how they are handled?

● Mutual Exclusion: What’s your plan for implementing mutual

exclusion?

● Scheduling: Look at the project web page for an execution example.

Questions?

