
Project 2!
Non-Preemptive 

Scheduling
COS 318



!   Use an IDE!
!   Eclipse!

!   Built into lab machines!
!   Help -> Install New Software...!

!   Download a specific Eclipse package for C/C++ from eclipse.org!
!   Others!

!   Start as soon as you can and get as much done as possible by design review time!
! bochsdbg / bochs-gdb!

General Suggestions



Good News

No more segments!!



Overview
!   Add multiprogramming to the kernel!

!   Non-preemptive scheduler!

!   5 threads, 3 processes!

!   Process Control Blocks!

!   Context switching!

!   Timing!

!   Mutual exclusion!

!   Lock!



Non-Preemptive
!   What does it mean?!

!   yield & exit!

!   do_yield() & do_exit() within the kernel 
(kernel threads can call these directly)!

!   yield() & exit() for processes!

!   dispatches a desire to call do_yield() or 
do_exit() to the kernel!



Non-Preemptive 
Scheduling Example
COS 318!
goToClass();!
goToPrecept();!
yield();!
coding();!
designReview();!
yield();!
coding();!
exit();!

Life!
haveFun();!

yield();!
play();!

yield();!
work();!
yield();!

hangout();!
...!

Brain!



What yield’ing does
!   When yield is called, the “context” of a task 

(thread or process) must be saved!

!   Process Control Block!

!   What does it contain?!

! eflags (pushfl, popfl)!

!   Will be done in assembly!

!   Once the context is saved, the scheduler is 
run to pick a new task!



Picking a New Task

!   All tasks are waiting in queue!

!   Pick the next one from the front of the ready 
queue!

!   Restore it’s state from the PCB!

!   ret to where the task was executing before!



cdecl

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html!

caller-saved registers 

X 

X 



Why not just use jmp?!



Mutual Exclusion

!   Only one lock used by threads!

! lock_init(lock_t * l)!

! lock_acquire(lock_t * l)!

! lock_release(lock_t * l)!


