
Precept 1: Bootloader
COS 318: Fall 2020

Project 1 Schedule

● Design Review:

○ Monday 9/14, 3-7pm

○ Tuesday 9/15, 3-7PM

Project 1 Schedule

● Precept:

○ Monday 9/14, 7:30-8:20 PM

○ Tuesday 9/15, 7:30-8:20 PM

Project 1 Schedule

● Project Due:

○ Sunday 9/20, 11:55 PM

Project 1 Overview

● Write a bootloader: bootblock.s

○ How to set up and start running the OS

○ Written in x86 assembly (AT&T syntax)

● Implement a tool to create a bootable OS image: createimage.c

○ Bootable OS image contains bootloader and kernel

○ How are executable files structured?

○ Become familiar with ELF format

General Suggestions

● Read assembly_example.s in start code pkg

/u/318/code/project1

● Get bootblock.s working before starting on

createimage.c

● Read documentation on ELF format

● If you haven’t already started, start now

Segment Registers

● Set %cs as needed in BL, zero it for the kernel

● Bootloader linked with offset of 0x0

○ %ds must compensate

● Kernel linked with offset of 0x1000

○ %ds must be set to 0x0

Bootloader

Boot Process

● Nothing in RAM on startup:

○ Load BIOS from ROM

○ BIOS loads bootloader from
disk

○ Bootloader loads the rest

Loading the Bootloader

● Find bootable storage
device (HDD, USB, etc.)

● Load first disk sector (MBR)
into RAM at 0x7c00

● Switch control to this
location

Master Boot Record

● First sector of a hard disk

○ Beginning: bootloader code

○ Remaining part: partition table

● BIOS sets %dl to the drive number

● For more info: see MBR and Partition Table

https://wiki.osdev.org/MBR_(x86)
http://wiki.osdev.org/Partition_Table

Bootloader Tasks

1. Load kernel
into memory

2. Setup kernel
stack

3. Transfer
control to
kernel

BIOS Services

● Use BIOS services through INT instruction
○ Store the parameters in the registers
○ Triggers a software interrupt

● int $INT_NUM
○ int $0x10 # video services
○ int $0x13 # disk services
○ int $0x16 # keyboard services

BIOS INT 0x13

● Function 2 reads from disk
○ %ah: 2
○ %al: Number of sectors to read
○ %ch: Cylinder number (bits 0-7)
○ %cl: Sector number (bits 0-5); bits 6-7 are bits 8-9 of the cylinder number
○ %dh: Starting head number
○ %dl: Drive number
○ %es:%bx: Pointer to memory region to place data read from disk

● Returns
○ %ah: Return status (0 if successful)
○ Carry flag = 0 if successful, 1 if error occurred

● For more information:
○ https://en.wikipedia.org/wiki/Cylinder-head-sector

https://en.wikipedia.org/wiki/Cylinder-head-sector

Createimage + ELF

ELF Format

● Executable and linking format

● Created by assembler and link editor

● Object file: Binary representation of programs intended
to execute directly on a processor

● Supports various processors/architectures

● Represents control data in a machine-independent
format

ELF Object File Format

● Header (pp. 1-3 to 1-5)
○ Beginning of file
○ Roadmap, file organization

● Program Header Table (p. 2-2)
○ Array, each element describes a segment
○ Tells system how to create the process

image
○ Files used to create an executable

program must have a program header

ELF Useful Tools

● objdump: Display information from object files

○ Read manual page (man objdump)

● hexdump: Display file contents in hexadecimal,
decimal, octal, or ascii

○ Read manual page (man hexdump)

Questions?

