COS 318: Operating Systems

CPU Scheduling

Today’'s Topics

¢ CPU scheduling basics
¢ CPU scheduling algorithms

Why schedule CPU?

0 O
There can be a lot more ready threads than available

CPU hardware threads.
Let's check this by running htop in terminal:

A MacBook with a Quad-Core Intel Core i5-1038NG7 CPU

Add to Compare

CBDI Intel® Core™ i5-1038NG7 Processor

RE i5
107H EEX a M

COOETTTEErrr et e rrrrrirnniee.e%] COEETTTE et et r et rrriinilee.e%]
COEEEEETrrrrr e rrrrrrriiriiee.e%] COEEEEEEETrrr et e e rrrrrrrnlloe.e%]
COEEEEETrrrrr e rrrrrrriiiiiee.e%] COOEEEEEETrrrr et e e rrrrrrrnilloe.e%]
COORTTEEErrrr ettt e rrrrrirnliee.e%] COEETTTEErr ettt rrrriiinlilee.e%]
SRR A R RRRARRERR 8.82G/16.0G] asks: 518, 1237 thr; 8 running

Mobile

Vertical Segment
Processor Graphics

Processor Number i5-1038NG7
Expansion Options
Package Specifications Status Launched
Advanced Technologies Launch Date Q220
Security & Reliability
Lithography 10 nm
Ordering and Compliance Use Conditions PC/Client/Tablet
Recommen ded Customer Price $320.00

Product Images

Drivers and Software CPU Specifications

Technical Documentation # of Cores 4
of Threads 8 4
A [
®

When to schedule?

New process created
e fork() -2 child process created

e Schedule parent or child (or both)

Process dies and returns exit status
e Due tocalling exit (), or fatal exception/signal

Blocked process

e E.g.on|/O and semaphore
/O interrupt

HW clock interrupt

e E.g., with 250 Hz frequency
e Preemptive scheduler uses this to replace running processes

“
L Ery GET)

TR

Preemptive and Non-Preemptive Scheduling
o060

Preemption happens due to:

1. Timer interrupt, or

2. Higher priority process now ready Terminate
(call scheduler)

Scheduler

dispatc
Block for resource

(call scheduler)

Yield, Interrupt
(call scheduler)

Blocked

Create Resource free,

I/O completion interrupt
@ (move to ready queue)

Scheduling Categories

Different ways to categorize:

Non-preemptive (uncommon these days)
Preemptive

" Batch systems > throughput turnaround time
< Interactive systems —— response time proportionality~/
meet deadlines~/ predictability\/

L Real-time systems

< Uniprocessor Our assumptions:

Multiprocessor e Uniprocessor
e One process per user

e One thread per process

“
L Ery GET)

TR

e Processes are independent 3

Scheduling Algorithms

¢ Simplified view of scheduling:
e Save process state (to PCB)
e Pick a process to run next
e Dispatch process

First-Come-First-Serve (FCFS) Policy

Non-preemptive
Schedule tasks in the order they arrive
e Run them until completion, block, or yield

Example 1

e P1=24sec, P2 =3 sec, and P3 = 3 sec, submitted ‘same’ time in that order
e Avg. response time: (24+27+30)/3 = 27s. Avg. wait time: (0+24+27)/3 = 17s

P1 P2 | P3

Example 2
e Same jobs but come in different order: P2, P3 and P1
e Avg. response time: (3 + 6 + 30) / 3 = 13s. Avg wait time: (0+3+6)/3 = 3s

P2 | P3 P1

FIFO pro: Simple. Con: Short jobs get stuck behind long ones

10

Shortest Job First (SJF) Policy
00
Shortest Remaining Time to Completion First (SRTCF)

Whenever scheduling decision is to be made, schedule
process with shortest remaining time to completion
e Non-preemptive case: straightforward
e Preemptive case: if new process arrives with smaller remaining
time, preempt running process and schedule new one
Simple example: all arrive at same time:
e P1 =06sec, P2 = 8sec, P3 = 7sec, P4 = 3sec

P4 P P3 P2

SJF is the optimal policy to minimize average response
time.

11

Example of non-preemptive SJF

Process Arrival Time Burst Time
P, 0.0 /
P, 2.0 4
P, 4.0 1
P, 5.0 4

SJF (non-preemptive)

Average waitingtime=(0+6+3 +7)/[4 =4

12

Example of preemptive SJF

Process Arrival Time Burst Time
P, 0.0 /
P, 2.0 4
P, 4.0 1
P, 5.0 4

SJF (preemptive)

P1 P2 P3 P2 P4 P1

0 2 4 5 7 11 16

Average waiting time=(9+ 1+ 0 +2)/4 =3

13

“
L Ery GET)

TR

Evaluating SJF
o060

Q1: What might go wrong if you use a SJF policy to do
your assignments?

e The longer assignments might never be completed and
deadlines would be missed.

Q2: What practical limitation prevents using SJF?
e It is not always feasible to know completion times in advance.

14

Round Robin Scheduling Policy

> — > >
Current
process

¢ Like FCFS, but with a time slice (quantum) for timer interrupt
e Time-interrupted process is moved to end of queue

¢ Mitigates the starvation issue of SJF
¢ Real systems also have |/O interrupts in the mix
¢ How do you choose the time slice?

higher context can increase
switch overhead starvation

< >
@ short quantum {}Overhead kept at long quantum

< 1% typically 15

FCFS vs. Round Robin

5 jobs, each taking 100 seconds, all coming at t=0s

FCFS RR (T=5s)

i1 Rr=toos (|0 QA QDL QL QLR Q Q0000 seos

2 RT=200s 485s

3 RT=300s 490s

j4 RT=400s 495s

j5 RT=500s 500s
Avg. RT = 300s Avg. RT = 490s

Comparisons

e FCFS has less average response time and no task is worse off

e 1) SJF result same as FCFS, 2) SJF is optimal
- FCFS optimal here

e But, e.qg. for video streaming, RR is good, since everyone

@ makes progress and gets a share “all the time” .

Resource Utilization Example

0O
¢ A, B, and C run forever (in this order)

e A and B each uses 100% CPU forever [both CPU-bound]
e C:.CPU+1/0O job (1ms CPU + 10ms disk 1/O) [I/O-bound]

¢ RR with time slice 100ms:
e A(100ms CPU), B (100ms CPU), C (1ms CPU + 10ms 1/O)

CPU Util: 201/(201+36) = 100% || 1/O Util: 10/(201+36) = 5%

¢ RR with time slice 1ms:

e A(1ms CPU), B (1ms CPU), C (1ms CPU), A (1ms CPU), B
(1fms CPU), C(10ms I/O) || A, B, ..., A, B

CPU Util: 15/(15+166) = 100% || 1/0 Util: 10/(15+1645) = 67%

¢ What do we learn from this example?

18

Virtual Round Robin Policy

0O
& I/O-bounq_processes Timeout
go to auxiliary queue .
(instead of ready Dispatch
queue) to get —t— CPU
scheduled Admit
¢ Aux queue is FIFO — Aux queue
¢ Aux queue has s 1O wait
preference over ready b= —-:
queue % I/O wait
s ol -
Q
- _-: I/O wait

19

Priority Scheduling Policy

Not all processes are equal, so rank them
The method

e Assign each process a priority
e Run the process with highest priority in the ready queue first
e Adjust priority dynamically
« 1/O wait raises the priority, reduce priority as process runs
Why adjusting priorities dynamically
e T1 at priority 4, T2 at priority 1 and T2 holds lock L

e Scenario
* T1 tries to acquire L, fails, blocks.
» T3 enters system at priority 3.
* T2 never gets to run, and T1 is never unblocked

)c
[Ery IGET)

TR

20

Multi-level Feedback Queues (MFQ)

higher priority Priority ~ Time slices

new tasks — :- 4
_ [T

o R O

3
2
1

lower priority

¢ Round-robin queues, each with different priority

¢ Higher priority queues have shorter time slices

¢ Jobs start at highest priority queue

+ If timeout expires (needs more CPU), drop one level

+ If timeout doesn'’t expire (e.g., blocked), stay or pushup one level

¢ What does this method do?

21

Lottery Scheduling
00
Motivations

e SJF does well with average response time, but is unfair (long
jobs can be starved)

e Need a way to give everybody some chance of running

Lottery method
e Give each job a number of tickets
e Randomly pick a winning ticket
e To approximate SJF, give short jobs more tickets
e To avoid starvation, give each job at least one ticket
e Cooperative processes can exchange tickets

22

Multiprocessor and Cluster

CPU
Core 1 Core N

L1$ | ==« | L1$
L2 $ L2 $

L3 $

Memory

Multiprocessor architecture Cluster or multicomputer
Single OS An OS in each box
Cache coherence Distributed memory

23

Multiprocessor/Cluster Scheduling

Design issue
e Process/thread to processor assignment

Gang scheduling (co-scheduling)

e Threads of the same process will run together
e Processes of the same application run together

Dedicated processor assignment

e Threads will be running on specific processors to completion
e On a multiprocessor it is called affinity (or CPU pinning)

e \When is this a good idea?

24

Real-Time Scheduling

Two types of real-time

e Hard deadline
 Must meet, otherwise can cause fatal error

e Soft Deadline
« Meet most of the time, but not mandatory

Admission control

e Take a real-time process only if the system can guarantee the
“real-time” behavior of all processes.

e Assume periodic processes. The jobs are schedulable, if the

following holds:
> Gs
T

where C; = computation time, and T, = period.

“
L Ery GET)

TR

25

Rate Monotonic Scheduling (Liu & Layland 73)

00
Assumptions

e Each periodic process must complete within its period

e No process is dependent on any other process

e A process needs same amount of CPU time on each burst
e Non-periodic processes have no deadlines

e Process preemption occurs instantaneously (no overhead)

Main ideas of RMS

e Assign each process a fixed priority = frequency of occurrence
e Run the ready process with highest priority

Example
e P1 runs every 30ms gets priority 33 (1s/30ms = 33 times/sec)
e P2 runs every 50ms gets priority 20 (1s/50ms = 20 times/sec)

“
L Ery GET)

TR

26

Earliest Deadline Scheduling
00
Assumptions
e \When a process needs CPU time, it announces its deadline
e No need to be periodic process
e CPU time needed may vary

Main idea of EDS

e Sort ready processes by their deadlines
e Run the first process on the list (earliest deadline first)

e \When a new process is ready, it preempts the current one if its
deadline is closer

Example

e P1 needs to finish by 30sec, P2 by 40sec and P3 by 50sec
e P1 goes first
e More in MOS 7.4 4

)c
[Ery IGET)

TR

27

Perceived Value vs. Response Time
o060

>
>
>

%
y,.
%7@

Perceived Value
Perceived Value
Perceived Value

> > >
Response Time Response Time Response Time

General Purpose System Real-Time System High frequency Trading

28

Summary

00
Best algorithms may depend on your primary goals

e FIFO simple, optimal avg response time for tasks of equal size,
but can be poor avg response time if tasks vary a lot in size

e SJF gives the minimal average response time, but can be not
great in variance of response times

e RR has very poor avg response time for equal size tasks, but is
close to SJF for variable size tasks

e Small time slice is important for improving 1/O utilization

If tasks have mix of processing and I/O, do well under SJF but
can do poorly under RR

Priority and its variations are used in most systems
Lottery scheduling is flexible

Multi-queue can achieve a good balance

Admission control is important in real-time scheduling

29

