COS 318: Operating Systems

CPU Scheduling




Today’'s Topics

¢ CPU scheduling basics
¢ CPU scheduling algorithms




Why schedule CPU?

0 O
There can be a lot more ready threads than available

CPU hardware threads.
Let's check this by running htop in terminal:
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When to schedule?

New process created
e fork() -2 child process created

e Schedule parent or child (or both)

Process dies and returns exit status
e Due tocalling exit (), or fatal exception/signal

Blocked process

e E.g.on|/O and semaphore
/O interrupt

HW clock interrupt

e E.g., with 250 Hz frequency
e Preemptive scheduler uses this to replace running processes
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Preemptive and Non-Preemptive Scheduling
o060

Preemption happens due to:

1. Timer interrupt, or

2. Higher priority process now ready Terminate
(call scheduler)

Scheduler

dispatc
Block for resource

(call scheduler)

Yield, Interrupt
(call scheduler)

Blocked

Create Resource free,

I/O completion interrupt
@ (move to ready queue)




Scheduling Categories

Different ways to categorize:

Non-preemptive (uncommon these days)
Preemptive

" Batch systems > throughput turnaround time
< Interactive systems —— response time proportionality~/
meet deadlines~/ predictability\/

L Real-time systems

< Uniprocessor Our assumptions:

Multiprocessor e Uniprocessor
e One process per user

e One thread per process
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Scheduling Algorithms

¢ Simplified view of scheduling:
e Save process state (to PCB)
e Pick a process to run next
e Dispatch process




First-Come-First-Serve (FCFS) Policy

Non-preemptive
Schedule tasks in the order they arrive
e Run them until completion, block, or yield

Example 1

e P1=24sec, P2 =3 sec, and P3 = 3 sec, submitted ‘same’ time in that order
e Avg. response time: (24+27+30)/3 = 27s. Avg. wait time: (0+24+27)/3 = 17s

P1 P2 | P3

Example 2
e Same jobs but come in different order: P2, P3 and P1
e Avg. response time: (3 + 6 + 30) / 3 = 13s. Avg wait time: (0+3+6)/3 = 3s

P2 | P3 P1

FIFO pro: Simple. Con: Short jobs get stuck behind long ones
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Shortest Job First (SJF) Policy
00
Shortest Remaining Time to Completion First (SRTCF)

Whenever scheduling decision is to be made, schedule
process with shortest remaining time to completion
e Non-preemptive case: straightforward
e Preemptive case: if new process arrives with smaller remaining
time, preempt running process and schedule new one
Simple example: all arrive at same time:
e P1 =06sec, P2 = 8sec, P3 = 7sec, P4 = 3sec

P4 P P3 P2

SJF is the optimal policy to minimize average response
time.
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Example of non-preemptive SJF

Process Arrival Time Burst Time
P, 0.0 /
P, 2.0 4
P, 4.0 1
P, 5.0 4

SJF (non-preemptive)

Average waitingtime=(0+6+3 +7)/[4 =4
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Example of preemptive SJF

Process Arrival Time Burst Time
P, 0.0 /
P, 2.0 4
P, 4.0 1
P, 5.0 4

SJF (preemptive)

P1 P2 P3 P2 P4 P1

0 2 4 5 7 11 16

Average waiting time=(9+ 1+ 0 +2)/4 =3
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Evaluating SJF
o060

Q1: What might go wrong if you use a SJF policy to do
your assignments?

e The longer assignments might never be completed and
deadlines would be missed.

Q2: What practical limitation prevents using SJF?
e It is not always feasible to know completion times in advance.
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Round Robin Scheduling Policy

> — > >
Current
process

¢ Like FCFS, but with a time slice (quantum) for timer interrupt
e Time-interrupted process is moved to end of queue

¢ Mitigates the starvation issue of SJF
¢ Real systems also have |/O interrupts in the mix
¢ How do you choose the time slice?

higher context can increase
switch overhead starvation

< >
@ short quantum {}Overhead kept at long quantum

< 1% typically 15




FCFS vs. Round Robin

5 jobs, each taking 100 seconds, all coming at t=0s

FCFS RR (T=5s)

i1 Rr=toos (|0 QA QDL QL QLR Q Q0000 seos

2 RT=200s 485s

3 RT=300s 490s

j4 RT=400s 495s

j5 RT=500s 500s
Avg. RT = 300s Avg. RT = 490s

Comparisons

e FCFS has less average response time and no task is worse off

e 1) SJF result same as FCFS, 2) SJF is optimal
- FCFS optimal here

e But, e.qg. for video streaming, RR is good, since everyone

@ makes progress and gets a share “all the time” .




Resource Utilization Example

0O
¢ A, B, and C run forever (in this order)

e A and B each uses 100% CPU forever [both CPU-bound]
e C:.CPU+1/0O job (1ms CPU + 10ms disk 1/O) [I/O-bound]

¢ RR with time slice 100ms:
e A(100ms CPU), B (100ms CPU), C (1ms CPU + 10ms 1/O)

CPU Util: 201/(201+36) = 100% || 1/O Util: 10/(201+36) = 5%

¢ RR with time slice 1ms:

e A(1ms CPU), B (1ms CPU), C (1ms CPU), A (1ms CPU), B
(1fms CPU), C(10ms I/O) || A, B, ..., A, B

CPU Util: 15/(15+166) = 100% || 1/0 Util: 10/(15+1645) = 67%

¢ What do we learn from this example?
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Virtual Round Robin Policy

0O
& I/O-bounq_processes Timeout
go to auxiliary queue .
(instead of ready Dispatch
queue) to get —t— CPU
scheduled Admit
¢ Aux queue is FIFO — Aux queue
¢ Aux queue has s 1O wait
preference over ready b= —-:
queue % I/O wait
s ol -
Q
- _-: I/O wait
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Priority Scheduling Policy

Not all processes are equal, so rank them
The method

e Assign each process a priority
e Run the process with highest priority in the ready queue first
e Adjust priority dynamically
« 1/O wait raises the priority, reduce priority as process runs
Why adjusting priorities dynamically
e T1 at priority 4, T2 at priority 1 and T2 holds lock L

e Scenario
* T1 tries to acquire L, fails, blocks.
» T3 enters system at priority 3.
* T2 never gets to run, and T1 is never unblocked
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Multi-level Feedback Queues (MFQ)

higher priority Priority ~ Time slices

new tasks — :- 4
_ [T

o R O

3
2
1

lower priority

¢ Round-robin queues, each with different priority

¢ Higher priority queues have shorter time slices

¢ Jobs start at highest priority queue

+ If timeout expires (needs more CPU), drop one level

+ If timeout doesn'’t expire (e.g., blocked), stay or pushup one level

¢ What does this method do?
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Lottery Scheduling
00
Motivations

e SJF does well with average response time, but is unfair (long
jobs can be starved)

e Need a way to give everybody some chance of running

Lottery method
e Give each job a number of tickets
e Randomly pick a winning ticket
e To approximate SJF, give short jobs more tickets
e To avoid starvation, give each job at least one ticket
e Cooperative processes can exchange tickets
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Multiprocessor and Cluster

CPU
Core 1 Core N

L1$ | ==« | L1$
L2 $ L2 $

L3 $

Memory

Multiprocessor architecture  Cluster or multicomputer
Single OS An OS in each box
Cache coherence Distributed memory
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Multiprocessor/Cluster Scheduling

Design issue
e Process/thread to processor assignment

Gang scheduling (co-scheduling)

e Threads of the same process will run together
e Processes of the same application run together

Dedicated processor assignment

e Threads will be running on specific processors to completion
e On a multiprocessor it is called affinity (or CPU pinning)

e \When is this a good idea?
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Real-Time Scheduling

Two types of real-time

e Hard deadline
 Must meet, otherwise can cause fatal error

e Soft Deadline
« Meet most of the time, but not mandatory

Admission control

e Take a real-time process only if the system can guarantee the
“real-time” behavior of all processes.

e Assume periodic processes. The jobs are schedulable, if the

following holds:
> Gs
T

where C; = computation time, and T, = period.
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Rate Monotonic Scheduling (Liu & Layland 73)

00
Assumptions

e Each periodic process must complete within its period

e No process is dependent on any other process

e A process needs same amount of CPU time on each burst
e Non-periodic processes have no deadlines

e Process preemption occurs instantaneously (no overhead)

Main ideas of RMS

e Assign each process a fixed priority = frequency of occurrence
e Run the ready process with highest priority

Example
e P1 runs every 30ms gets priority 33 (1s/30ms = 33 times/sec)
e P2 runs every 50ms gets priority 20 (1s/50ms = 20 times/sec)
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Earliest Deadline Scheduling
00
Assumptions
e \When a process needs CPU time, it announces its deadline
e No need to be periodic process
e CPU time needed may vary

Main idea of EDS

e Sort ready processes by their deadlines
e Run the first process on the list (earliest deadline first)

e \When a new process is ready, it preempts the current one if its
deadline is closer

Example

e P1 needs to finish by 30sec, P2 by 40sec and P3 by 50sec
e P1 goes first
e More in MOS 7.4 4
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Perceived Value vs. Response Time
o060

>
>
>

%
y,.
%7@

Perceived Value
Perceived Value
Perceived Value

> > >
Response Time Response Time Response Time

General Purpose System Real-Time System High frequency Trading

28




Summary

00
Best algorithms may depend on your primary goals

e FIFO simple, optimal avg response time for tasks of equal size,
but can be poor avg response time if tasks vary a lot in size

e SJF gives the minimal average response time, but can be not
great in variance of response times

e RR has very poor avg response time for equal size tasks, but is
close to SJF for variable size tasks

e Small time slice is important for improving 1/O utilization

If tasks have mix of processing and I/O, do well under SJF but
can do poorly under RR

Priority and its variations are used in most systems
Lottery scheduling is flexible

Multi-queue can achieve a good balance

Admission control is important in real-time scheduling
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