
COS 318: Operating Systems

CPU Scheduling

3

Today’s Topics

u CPU scheduling basics
u CPU scheduling algorithms

Why schedule CPU?

u There can be a lot more ready threads than available
CPU hardware threads.

u Let’s check this by running htop in terminal:
A MacBook with a Quad-Core Intel Core i5-1038NG7 CPU

4

When to schedule?

1. New process created
l fork() à child process created
l Schedule parent or child (or both)

2. Process dies and returns exit status
l Due to calling exit(), or fatal exception/signal

3. Blocked process
l E.g. on I/O and semaphore

4. I/O interrupt
5. HW clock interrupt

l E.g., with 250 Hz frequency
l Preemptive scheduler uses this to replace running processes

5

7

Preemptive and Non-Preemptive Scheduling

Running

Blocked
Ready

Resource free,
I/O completion interrupt

(move to ready queue)

Create

Terminate
(call scheduler)

Yield, Interrupt
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

u Preemption happens due to:
1. Timer interrupt, or
2. Higher priority process now ready

Scheduling Categories

Different ways to categorize:

Non-preemptive (uncommon these days)

Preemptive

Batch systems
Interactive systems
Real-time systems

Uniprocessor
Multiprocessor

throughput turnaround time
response time proportionality
meet deadlines predictability

8

Our assumptions:
l Uniprocessor

l One process per user

l One thread per process

l Processes are independent

Scheduling Algorithms

u Simplified view of scheduling:
l Save process state (to PCB)
l Pick a process to run next
l Dispatch process

9

First-Come-First-Serve (FCFS) Policy
u Non-preemptive
u Schedule tasks in the order they arrive

l Run them until completion, block, or yield

P1 P2 P3

P2 P3 P1

u Example 2
l Same jobs but come in different order: P2, P3 and P1
l Avg. response time: (3 + 6 + 30) / 3 = 13s. Avg wait time: (0+3+6)/3 = 3s

u FIFO pro: Simple. Con: Short jobs get stuck behind long ones
10

u Example 1
l P1 = 24 sec, P2 = 3 sec, and P3 = 3 sec, submitted ‘same’ time in that order
l Avg. response time: (24+27+30)/3 = 27s. Avg. wait time: (0+24+27)/3 = 17s

Shortest Job First (SJF) Policy

u Shortest Remaining Time to Completion First (SRTCF)
u Whenever scheduling decision is to be made, schedule

process with shortest remaining time to completion
l Non-preemptive case: straightforward
l Preemptive case: if new process arrives with smaller remaining

time, preempt running process and schedule new one
u Simple example: all arrive at same time:

l P1 = 6sec, P2 = 8sec, P3 = 7sec, P4 = 3sec

u SJF is the optimal policy to minimize average response
time.

P1 P2P3P4

11

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

uSJF (non-preemptive)

uAverage waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of non-preemptive SJF

P1 P3 P2

73 160

P4

8 12

12

Example of preemptive SJF

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

uSJF (preemptive)

uAverage waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

13

Evaluating SJF

u Q1: What might go wrong if you use a SJF policy to do
your assignments?
l The longer assignments might never be completed and

deadlines would be missed.

u Q2: What practical limitation prevents using SJF?
l It is not always feasible to know completion times in advance.

14

Round Robin Scheduling Policy

u Like FCFS, but with a time slice (quantum) for timer interrupt
l Time-interrupted process is moved to end of queue

u Mitigates the starvation issue of SJF
u Real systems also have I/O interrupts in the mix
u How do you choose the time slice?

Current
process

15
short quantum long quantum

higher context
switch overhead

can increase
starvation

Overhead kept at
≤ 1% typically

500s

FCFS vs. Round Robin

u 5 jobs, each taking 100 seconds, all coming at t=0s

16

u Comparisons
l FCFS has less average response time and no task is worse off
l 1) SJF result same as FCFS, 2) SJF is optimal

à FCFS optimal here
l But, e.g. for video streaming, RR is good, since everyone

makes progress and gets a share “all the time”

j1
j2
j3
j4
j5

FCFS RR (T=5s)
RT=100s

RT=200s

RT=300s

RT=400s

RT=500s

495s
490s

485s

480s

Avg. RT = 300s Avg. RT = 490s

Resource Utilization Example
u A, B, and C run forever (in this order)

l A and B each uses 100% CPU forever [both CPU-bound]
l C: CPU + I/O job (1ms CPU + 10ms disk I/O) [I/O-bound]

u RR with time slice 100ms:
l A (100ms CPU), B (100ms CPU), C (1ms CPU + 10ms I/O)

u RR with time slice 1ms:
l A (1ms CPU), B (1ms CPU), C (1ms CPU), A (1ms CPU), B

(1ms CPU), C(10ms I/O) || A, B, …, A, B

u What do we learn from this example?
18

CPU Util: 201/(201+3𝛿) ≈ 100% I/O Util: 10/(201+3𝛿) ≈ 5%

CPU Util: 15/(15+16𝛿) ≈ 100% I/O Util: 10/(15+16𝛿) ≈ 67%

19

Virtual Round Robin Policy

u I/O-bound processes
go to auxiliary queue
(instead of ready
queue) to get
scheduled

u Aux queue is FIFO
u Aux queue has

preference over ready
queue

CPUAdmit

Timeout

Dispatch

I/O wait

I/O wait

I/O wait

Aux queue

I/O
 c

om
pl

et
io

n

20

Priority Scheduling Policy

uNot all processes are equal, so rank them
u The method

l Assign each process a priority
l Run the process with highest priority in the ready queue first
l Adjust priority dynamically

• I/O wait raises the priority, reduce priority as process runs
u Why adjusting priorities dynamically

l T1 at priority 4, T2 at priority 1 and T2 holds lock L
l Scenario

• T1 tries to acquire L, fails, blocks.
• T3 enters system at priority 3.
• T2 never gets to run, and T1 is never unblocked

Multi-level Feedback Queues (MFQ)

u Round-robin queues, each with different priority
u Higher priority queues have shorter time slices
u Jobs start at highest priority queue
u If timeout expires (needs more CPU), drop one level
u If timeout doesn’t expire (e.g., blocked), stay or pushup one level
u What does this method do?

Priority
4
3
2
1

Time slices
1
2
4
8

21

higher priority

lower priority

new tasks

Lottery Scheduling

u Motivations
l SJF does well with average response time, but is unfair (long

jobs can be starved)
l Need a way to give everybody some chance of running

u Lottery method
l Give each job a number of tickets
l Randomly pick a winning ticket
l To approximate SJF, give short jobs more tickets
l To avoid starvation, give each job at least one ticket
l Cooperative processes can exchange tickets

22

CPU

23

Multiprocessor and Cluster

Multiprocessor architecture
u Single OS
u Cache coherence

Cluster or multicomputer
u An OS in each box
u Distributed memory

…
Core 1

L1 $

L2 $

Core N

L1 $

L2 $

…

Memory
Network

L3 $

24

Multiprocessor/Cluster Scheduling

u Design issue
l Process/thread to processor assignment

u Gang scheduling (co-scheduling)
l Threads of the same process will run together
l Processes of the same application run together

u Dedicated processor assignment
l Threads will be running on specific processors to completion
l On a multiprocessor it is called affinity (or CPU pinning)
l When is this a good idea?

25

Real-Time Scheduling

u Two types of real-time
l Hard deadline

• Must meet, otherwise can cause fatal error
l Soft Deadline

• Meet most of the time, but not mandatory

u Admission control
l Take a real-time process only if the system can guarantee the

“real-time” behavior of all processes.
l Assume periodic processes. The jobs are schedulable, if the

following holds:

where Ci = computation time, and Ti = period.

å Ci
Ti

£ 1

26

Rate Monotonic Scheduling (Liu & Layland 73)

u Assumptions
l Each periodic process must complete within its period
l No process is dependent on any other process
l A process needs same amount of CPU time on each burst
l Non-periodic processes have no deadlines
l Process preemption occurs instantaneously (no overhead)

u Main ideas of RMS
l Assign each process a fixed priority = frequency of occurrence
l Run the ready process with highest priority

u Example
l P1 runs every 30ms gets priority 33 (1s/30ms = 33 times/sec)
l P2 runs every 50ms gets priority 20 (1s/50ms = 20 times/sec)

27

Earliest Deadline Scheduling

u Assumptions
l When a process needs CPU time, it announces its deadline
l No need to be periodic process
l CPU time needed may vary

u Main idea of EDS
l Sort ready processes by their deadlines
l Run the first process on the list (earliest deadline first)
l When a new process is ready, it preempts the current one if its

deadline is closer

u Example
l P1 needs to finish by 30sec, P2 by 40sec and P3 by 50sec
l P1 goes first
l More in MOS 7.4.4

28

Perceived Value vs. Response Time

Response Time

Pe
rc

ei
ve

d
Va

lu
e

Response Time

Pe
rc

ei
ve

d
Va

lu
e

Response Time

Pe
rc

ei
ve

d
Va

lu
e

deadline

Real-Time System High frequency TradingGeneral Purpose System

29

Summary

u Best algorithms may depend on your primary goals
l FIFO simple, optimal avg response time for tasks of equal size,

but can be poor avg response time if tasks vary a lot in size
l SJF gives the minimal average response time, but can be not

great in variance of response times
l RR has very poor avg response time for equal size tasks, but is

close to SJF for variable size tasks
l Small time slice is important for improving I/O utilization
l If tasks have mix of processing and I/O, do well under SJF but

can do poorly under RR
l Priority and its variations are used in most systems
l Lottery scheduling is flexible
l Multi-queue can achieve a good balance
l Admission control is important in real-time scheduling

