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Today’s Topics

u Thread implementation
l Non-preemptive versus preemptive threads

l Kernel vs. user threads
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Kernel scheduler

OS Scheduler

u Kernel consists of
l Boot loader
l BIOS
l Key drivers
l Threads
l Scheduler
l …

u Scheduler
l Scheduler schedules threads 

on context switch
l (Amounts to scheduling processes, 

when scheduler sees only one 
thread per process)

l Uses a ready queue, to hold all 
ready threads

User
Process

User
Process



Thread Context Switching Decisions

u What to switch to?
l Scheduling algorithm

u What to save and restore?
l Schedule in a thread in the same address space (thread context switch)
l Schedule in a thread in a different address space (process context switch)

u When to switch?
l Voluntary

• Q: Write two examples of times when a thread might voluntarily 
switch out

l Involuntary
• Q: Write two examples of times when a thread might be 

involuntarily switched out



Thread Context Switching Decisions

u What to switch to?
l Scheduling algorithm

u What to save and restore?
l Schedule in a thread in the same address space (thread context switch)
l Schedule in a thread in a different address space (process context switch)

u When to switch?
l Voluntary

• Thread yields or blocks, e.g. for a resource like disk, a 
synchronization variable etc

• Thread_join (wait for a target process, e.g. child, to terminate)
l Involuntary

• Interrupt or exception
• Some other thread of higher priority needs to run
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Non-Preemptive Scheduling

Running

Blocked
Ready

Resource becomes available
(move to ready queue)

Create

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited
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Non-Preemptive Scheduling (contd.)

u A non-preemptive scheduler is invoked by a thread 
calling a yield, block, join or similar

u Simplest form of scheduler: When invoked:
save current process/thread state 
choose next process/thread to run
dispatch (load PCB/TCB and jump to it)

u Scheduler can be viewed as just another kernel thread
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Where and How to Save Thread Context?

u Save the context on the thread’s stack
l Many processors have a special instruction to do it efficiently
l But, need to deal with the overflow problem

u Check before saving
l Make sure that the stack has no overflow problem
l Copy it to the TCB residing in the kernel heap
l Not so efficient, but no overflow problems

frame
frame

frame
frame

frame
frame

frame
frameThread 2

Thread 1

Save the context
of Thread 1 to
its stack Context
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Thread Control Block (TCB)

l Current state
• Ready: ready to run
• Running: currently running
• Blocked: waiting for resources

l Registers
l Status (EFLAGS)
l Program counter (EIP)
l Stack



Voluntary thread context switch

u Save registers on old stack
u Switch to new stack, new thread
u Restore registers from new stack
u Return
u Exactly the same with kernel threads or user threads

// We enter as oldThread, but we return as newThread.
// Returns with newThread's registers and stack.

void thread_switch(oldThreadTCB, newThreadTCB) {
pushad;                 // Push general register values onto the old stack.
oldThreadTCB->sp = %esp; // Save the old thread's stack pointer.
%esp = newThreadTCB->sp; // Switch to the new stack.
popad; // Pop register values from the new stack.
return;

}
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Preemption

u Why?
l Timer interrupt for 

CPU management
l Asynchronous I/O completion

u When is CPU interrupted?
l Between instructions
l Within an instruction, 

except atomic ones
u Manipulate interrupts

l Disable (mask) interrupts
l Enable interrupts
l Non-Maskable Interrupts

CPU

Memory Interrupt
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Recall: Non-Preemptive Scheduling

Running

Blocked
Ready

Resource becomes available
(move to ready queue)

Create

Terminate
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

Yield
(call scheduler)
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State Transitions for Preemptive Scheduling

Running

Blocked
Ready

Resource becomes available, I/O completion interrupt
(move to ready queue)

Create

Terminate
(call scheduler)

Yield, Interrupt
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited
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Interrupt Handling for Preemptive Scheduling

u Timer interrupt handler:
l Save the current process / thread to its PCB / TCB
l Call scheduler

u I/O interrupt handler:
l Save the current process / thread to its PCB / TCB
l Do the I/O job
l Call scheduler

u Issues
l Disable/enable interrupts
l Make sure that it works on multiprocessors



User- and Kernel-level Threads
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Kernel scheduler

User
Process

User
Process

u Threads at user level (in user space, user mode) and at 
kernel level

u User level threads map to kernel level threads, which are all 
the operating system really knows about
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User-level Threads

u Managed by user-level runtime 
software, run in user mode

u Kernel knows only about user 
processes, not user threads, i.e. 
assumes one thread per processs

u Thread calls are user-level
u Context switch at user-level

✚ Fast (could be as fast as function call)
✚ Can have custom user-level 

schedulers
✚ Lower kernel complexity
✚ Can implement on kernels that are 

single-threaded

! Entire process blocks when 
one thread blocks 

! Kernel makes suboptimal 
decisions about scheduling
! OS modifications to 

overcome this

! Hard to do pure on mPs
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User-level Threads

u Managed by user-level runtime 
software, run in user mode

u Kernel knows only about user 
processes, not user threads, i.e. 
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single-threaded
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one thread blocks 

! Kernel makes suboptimal 
decisions about scheduling
! OS modifications to 

overcome this

! Hard to do pure on mPs
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Kernel Threads

u Managed by OS, run in kernel mode
u Invoking thread API causes system call
u Context switch invokes OS
u PCB per process and TCB per thread in 

kernel

⍆ Kernel has knowledge of threads so can 
optimize better
l E.g. give more CPU time to processes with 

more threads, or threads that are not idle
⍆ When one thread in a process blocks, 

others can still run
l Important when threads block frequently

! High overhead
! More complex OS
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Implementation Models for User-level Threads

u User threads are mapped to kernel threads
l Can think of it as a kernel thread per “virtual processor”
l (need at least one kernel-level thread per core)

u Simpler typical cases are 1:1 and many to one

u In general, m user threads mapped to n kernel threads
l Certain user level threads bound to a subset of kernel threads
l Dynamically change-able no. of kernel threads for user 

process (but needs more communication mechanisms 
up/down), etc.
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Summary

u Non-preemptive threads issues
l Scheduler
l Where to save contexts

u Preemptive threads
l Interrupts can happen any where!

u Kernel vs. user threads


