
COS 318: Operating Systems

Implementing Threads

Jaswinder Pal Singh and a Fabulous Course Staff
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Today’s Topics

u Thread implementation
l Non-preemptive versus preemptive threads

l Kernel vs. user threads

3

Kernel scheduler

OS Scheduler

u Kernel consists of
l Boot loader
l BIOS
l Key drivers
l Threads
l Scheduler
l …

u Scheduler
l Scheduler schedules threads

on context switch
l (Amounts to scheduling processes,

when scheduler sees only one
thread per process)

l Uses a ready queue, to hold all
ready threads

User
Process

User
Process

Thread Context Switching Decisions

u What to switch to?
l Scheduling algorithm

u What to save and restore?
l Schedule in a thread in the same address space (thread context switch)
l Schedule in a thread in a different address space (process context switch)

u When to switch?
l Voluntary

• Q: Write two examples of times when a thread might voluntarily
switch out

l Involuntary
• Q: Write two examples of times when a thread might be

involuntarily switched out

Thread Context Switching Decisions

u What to switch to?
l Scheduling algorithm

u What to save and restore?
l Schedule in a thread in the same address space (thread context switch)
l Schedule in a thread in a different address space (process context switch)

u When to switch?
l Voluntary

• Thread yields or blocks, e.g. for a resource like disk, a
synchronization variable etc

• Thread_join (wait for a target process, e.g. child, to terminate)
l Involuntary

• Interrupt or exception
• Some other thread of higher priority needs to run

6

Non-Preemptive Scheduling

Running

Blocked
Ready

Resource becomes available
(move to ready queue)

Create

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

7

Non-Preemptive Scheduling (contd.)

u A non-preemptive scheduler is invoked by a thread
calling a yield, block, join or similar

u Simplest form of scheduler: When invoked:
save current process/thread state
choose next process/thread to run
dispatch (load PCB/TCB and jump to it)

u Scheduler can be viewed as just another kernel thread

9

Where and How to Save Thread Context?

u Save the context on the thread’s stack
l Many processors have a special instruction to do it efficiently
l But, need to deal with the overflow problem

u Check before saving
l Make sure that the stack has no overflow problem
l Copy it to the TCB residing in the kernel heap
l Not so efficient, but no overflow problems

frame
frame

frame
frame

frame
frame

frame
frameThread 2

Thread 1

Save the context
of Thread 1 to
its stack Context

11

Thread Control Block (TCB)

l Current state
• Ready: ready to run
• Running: currently running
• Blocked: waiting for resources

l Registers
l Status (EFLAGS)
l Program counter (EIP)
l Stack

Voluntary thread context switch

u Save registers on old stack
u Switch to new stack, new thread
u Restore registers from new stack
u Return
u Exactly the same with kernel threads or user threads

// We enter as oldThread, but we return as newThread.
// Returns with newThread's registers and stack.

void thread_switch(oldThreadTCB, newThreadTCB) {
pushad; // Push general register values onto the old stack.
oldThreadTCB->sp = %esp; // Save the old thread's stack pointer.
%esp = newThreadTCB->sp; // Switch to the new stack.
popad; // Pop register values from the new stack.
return;

}

13

Preemption

u Why?
l Timer interrupt for

CPU management
l Asynchronous I/O completion

u When is CPU interrupted?
l Between instructions
l Within an instruction,

except atomic ones
u Manipulate interrupts

l Disable (mask) interrupts
l Enable interrupts
l Non-Maskable Interrupts

CPU

Memory Interrupt

14

Recall: Non-Preemptive Scheduling

Running

Blocked
Ready

Resource becomes available
(move to ready queue)

Create

Terminate
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

Yield
(call scheduler)

15

State Transitions for Preemptive Scheduling

Running

Blocked
Ready

Resource becomes available, I/O completion interrupt
(move to ready queue)

Create

Terminate
(call scheduler)

Yield, Interrupt
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

16

Interrupt Handling for Preemptive Scheduling

u Timer interrupt handler:
l Save the current process / thread to its PCB / TCB
l Call scheduler

u I/O interrupt handler:
l Save the current process / thread to its PCB / TCB
l Do the I/O job
l Call scheduler

u Issues
l Disable/enable interrupts
l Make sure that it works on multiprocessors

User- and Kernel-level Threads

18

Kernel scheduler

User
Process

User
Process

u Threads at user level (in user space, user mode) and at
kernel level

u User level threads map to kernel level threads, which are all
the operating system really knows about

19

User-level Threads

u Managed by user-level runtime
software, run in user mode

u Kernel knows only about user
processes, not user threads, i.e.
assumes one thread per processs

u Thread calls are user-level
u Context switch at user-level

✚ Fast (could be as fast as function call)
✚ Can have custom user-level

schedulers
✚ Lower kernel complexity
✚ Can implement on kernels that are

single-threaded

! Entire process blocks when
one thread blocks

! Kernel makes suboptimal
decisions about scheduling
! OS modifications to

overcome this

! Hard to do pure on mPs

20

User-level Threads

u Managed by user-level runtime
software, run in user mode

u Kernel knows only about user
processes, not user threads, i.e.
assumes one thread per processs

u Thread calls are user-level
u Context switch at user-level

✚ Fast (could be as fast as function call)
✚ Can have custom user-level

schedulers
✚ Lower kernel complexity
✚ Can implement on kernels that are

single-threaded

! Entire process blocks when
one thread blocks

! Kernel makes suboptimal
decisions about scheduling
! OS modifications to

overcome this

! Hard to do pure on mPs

21

Kernel Threads

u Managed by OS, run in kernel mode
u Invoking thread API causes system call
u Context switch invokes OS
u PCB per process and TCB per thread in

kernel

⍆ Kernel has knowledge of threads so can
optimize better
l E.g. give more CPU time to processes with

more threads, or threads that are not idle
⍆ When one thread in a process blocks,

others can still run
l Important when threads block frequently

! High overhead
! More complex OS

23

Implementation Models for User-level Threads

u User threads are mapped to kernel threads
l Can think of it as a kernel thread per “virtual processor”
l (need at least one kernel-level thread per core)

u Simpler typical cases are 1:1 and many to one

u In general, m user threads mapped to n kernel threads
l Certain user level threads bound to a subset of kernel threads
l Dynamically change-able no. of kernel threads for user

process (but needs more communication mechanisms
up/down), etc.

26

Summary

u Non-preemptive threads issues
l Scheduler
l Where to save contexts

u Preemptive threads
l Interrupts can happen any where!

u Kernel vs. user threads

