COS 318: Operating Systems

File Systems Reliability and
Performance (Contd.)




Topics

00
¢ Journaling and LFS

¢+ Copy on Write and Write Anywhere (NetApp WAFL)




Revisit Implementation of Transactions

Q00

BeginTransaction

o Start using a “write-ahead” log on disk

e Log all updates
Commit

o Write “commit” at the end of the log

e Then “write-behind” to disk by writing updates to disk

e Clearthe log
Rollback

e Clearthe log
Crash recovery

e If there is no “commit” in the log, do nothing

o If there is “commit,” replay the log and clear the log
Issues

e All updates on the log must be idempotent

e Each transaction has an Id or TID

o Must have a way to confirm that a disk write completes
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Journaling File System

Consistent updates using transactions
e Recovery is simple

Store the log on disk storage
e Overhead is high for journaling all updates

o« SW for commodity hardware journaling only metadata
(Microsoft NTFS and various Linux file systems)

Store the log on NVRAM

o Efficient to journal all updates
o Can achieve fast writes (many IOPS)

“Write behind” performs real updates

o Where to update (i-nodes and data blocks)?
o File layout is critical to performance
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Journaling File System

Example: Append a data block to a file on disk

Journaling all updates
o Execute the following transaction:
BeginTransaction
Update i-node
Update bitmap
Write data block
Commit

Journaling only metadata
o Write data block
o Execute the following transaction:
BeginTransaction
Update i-node
Update bitmap

Commit
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Log-structured File System (LFS)

¢ Structure the entire file system as a log with segments
e A segment has i-nodes, indirect blocks, and data blocks
e An i-node map maps i-node number to i-node locations
o All writes are sequential

¢ Issues
o There will be holes when deleting files
o Need garbage collection to get rid of holes
e Read performance?
+ Why? Goal is to improve write performance
e Not to confuse with the log for transactions/journaling
o Also useful for write and wear-leveling with NAND Flash

Unused

Inode Log structured m)>
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WAFL (Write Anywhere File Layout)

WAFL: Write Anywhere File Layout

e The basic NetApp file system
o Puts several of the concepts we’ve studied together

Design goals
o Fast services (more operations/sec and higher bandwidth)
e Support large file systems and allow growing smoothly

o High-performance software RAID (esp for slow writes due to
parity considerations)

e Restart quickly and consistently after a crash
Special features
e Introduce snapshots, using Copy-on-Write

e Journaling by using NVRAM to implement write-ahead log
e Layout inspired by LFS
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Snapshots

A snapshot is a read-only copy of the file system
e Introduced in 1993
e It has become a standard feature of today’s file servers

Use snapshots

e System administrator configures the number and frequency of snapshots
e An initial system can keep up to 20 snapshots
o Use snapshots to recover individual files

An example

phoenix% cd .snapshot

phoenix% 1s

hourly.0 hourly.2 hourly.4 nightly.0 nightly.2 weekly.l1l

hourly.l hourly.3 hourly.5 nightly.1l weekly.O0
phoenix%

Q: How much space does a snapshot consume?




I-node, Indirect and Data Blocks

WAFL uses 4KB blocks

e i-nodes (evolved from UNIX's)
o Data blocks

File size < 64 bytes

e i-node stores data directly

File size < 64K bytes

e I-node stores 16 ptrs to data
File size < 64M bytes

e I-node: 16 ptrs to indirect blocks
o Each stores 1K pointers to data
File size > 64M bytes

e I-node: ptrs to doubly indirect blocks

Note: each type points to all blocks at
same level
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WAFL Layout

+ A WAFL file system has

e A root i-node: root of everything
e An i-node file: contains all i-nodes )
o A block map file: indicates free blocks

e An i-node map file: indicates free i-nodes

Metadata
in files
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Block I-node Other files in the file system
map file map file

10




Why Keep Metadata in Files

Q00
Allow meta-data blocks to be written anywhere on disk

e This is the origin of “Write Anywhere File Layout”
e Any performance advantage?
Easy to increase the size of the file system dynamically
e Adding a disk can lead to adding i-nodes
e Integrate volume manager with WAFL

Enable copy-on-write to create snapshots
o Copy-on-write new data and metadata on new disk locations
o Fixed metadata locations very cumbersome for this

Q: Any exception to “write anywhere?”
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Snapshot Implementation

+ WAFL file system is a tree of blocks
+ Snapshot step 1

e Replicate the root i-node
e New root i-node is the active file system
e Old root i-node is the snapshot

+ Snapshot step 2...n

o Copy-on-write blocks to the root
o Active root i-node points to the new blocks
e Writes to the new block




File System Consistency

_ _ _ 00
Create a "consistency point” or hidden snapshot

o Create a consistency point or snapshot every 10 seconds
e On a crash, revert the file system to this snapshot
e Not visible to users

Many requests between consistency points
e Consistency point i
o Many writes

e Consistency point i+1 (advanced atomically)
e Many writes
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Non-Volatile RAM

Different types
e Flash memory (slower)
o Battery-backed DRAM (fast but battery lasts for only days)

Use an NVRAM to log writes

e Log all write requests since the last consistency point

e A clean shutdown empties NVRAM, creates one more
snapshot, and turns off N\VRAM

e A crash recovery needs to replay log to recover data from
NVRAM to the most recent snapshot and turn on the system
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Write Allocation

Q00
WAFL can write to any blocks on disk

o File metadata (i-node file, block map file and i-node map file)
are in files

WAFL can write blocks in any order

e Rely on consistency points to enforce file consistency

e NVRAM to buffer writes to implement ordering
WAFL can allocate disk space for many NFS operations
at once in a single write episode

e Reduce the number of disk I/Os

o Allocate space that is low latency
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Snhapshot Data Structure
o060

+ WAFL uses 32-bit —
: : : : ock map oy
entries in block map file | Time entry | Description

» 32-bitforeach 4K block | 11 100000000 |Blockis free

e 32-bit entry = 0: the disk T2 |0000000 1 |Active FS uses it
block is free T3 |00000011|Create snapshot 1
¢ Bit0 =1 T4 00000111 |Create snapshot 2
T T5 |00000110 |Active FS deletes it
active file system T6 |00000100 | Delete snapshot 1
references the block T7 00000000 | Delete snapshot 2

¢ Bit1=1:

the most recent snapshot L Set for active FS
references the block

— Set for snapshot 1

— Set for snapshot 2

— Set for snapshot 3
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Snapshot Creation

00
Problem

« Many NFS requests may arrive while creating a snapshot
o File cache may need replacements
o Undesirable to suspend the NFS request stream

WAFL solution

o Before a creation, mark dirty cache data “in-snapshot” and
suspend NFS request stream

o Defer all modifications to “in-snapshot” data
o Modify cache data not marked “in-snapshot”
e Do not flush cache data not marked “in-snapshot”
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Algorithm

Steps
o Allocate disk space for “in-snapshot” cached i-nodes
« Copy these i-nodes to disk buffer
» Clear “in-snapshot” bit of all cached i-nodes
o Update the block-map file
« For each entry, copy the bit for active FS to the new snapshot
e Flush

« Write all “in-snapshot” disk buffers to their new disk locations
* Restart NFS request stream

e Duplicate the root i-node

Performance
e Typically it takes less than a second
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Snapshot Deletion

Delete a snapshot’s root i-node

Clear bits in block-map file

e For each entry in block-map file, clear the bit representing the
shapshot
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Performance

O 0O
¢+ SPEC SFS benchmark shows 8X faster than others
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Summary

Journaling and LFS
e Journaling uses transactions to achieve consistency
e LFS improves write performance

WAFL

o Write anywhere layout (inspired by LFS)
e Snapshots have become a standard feature
e Journaling with NVRAM
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