COS 318: Operating Systems

File Systems Reliability and
Performance (Contd.)

Topics

00
¢ Journaling and LFS

¢+ Copy on Write and Write Anywhere (NetApp WAFL)

Revisit Implementation of Transactions

Q00

BeginTransaction

o Start using a “write-ahead” log on disk

e Log all updates
Commit

o Write “commit” at the end of the log

e Then “write-behind” to disk by writing updates to disk

e Clearthe log
Rollback

e Clearthe log
Crash recovery

e If there is no “commit” in the log, do nothing

o If there is “commit,” replay the log and clear the log
Issues

e All updates on the log must be idempotent

e Each transaction has an Id or TID

o Must have a way to confirm that a disk write completes

A G

®

Journaling File System

Consistent updates using transactions
e Recovery is simple

Store the log on disk storage
e Overhead is high for journaling all updates

o« SW for commodity hardware journaling only metadata
(Microsoft NTFS and various Linux file systems)

Store the log on NVRAM

o Efficient to journal all updates
o Can achieve fast writes (many IOPS)

“Write behind” performs real updates

o Where to update (i-nodes and data blocks)?
o File layout is critical to performance

)c
[Ery IGET)

TR

Journaling File System

Example: Append a data block to a file on disk

Journaling all updates
o Execute the following transaction:
BeginTransaction
Update i-node
Update bitmap
Write data block
Commit

Journaling only metadata
o Write data block
o Execute the following transaction:
BeginTransaction
Update i-node
Update bitmap

Commit

TR

Log-structured File System (LFS)

¢ Structure the entire file system as a log with segments
e A segment has i-nodes, indirect blocks, and data blocks
e An i-node map maps i-node number to i-node locations
o All writes are sequential

¢ Issues
o There will be holes when deleting files
o Need garbage collection to get rid of holes
e Read performance?
+ Why? Goal is to improve write performance
e Not to confuse with the log for transactions/journaling
o Also useful for write and wear-leveling with NAND Flash

Unused

Inode Log structured m)>

map

WAFL (Write Anywhere File Layout)

WAFL: Write Anywhere File Layout

e The basic NetApp file system
o Puts several of the concepts we’ve studied together

Design goals
o Fast services (more operations/sec and higher bandwidth)
e Support large file systems and allow growing smoothly

o High-performance software RAID (esp for slow writes due to
parity considerations)

e Restart quickly and consistently after a crash
Special features
e Introduce snapshots, using Copy-on-Write

e Journaling by using NVRAM to implement write-ahead log
e Layout inspired by LFS

)c
[Ery IGET)

TR

Snapshots

A snapshot is a read-only copy of the file system
e Introduced in 1993
e It has become a standard feature of today’s file servers

Use snapshots

e System administrator configures the number and frequency of snapshots
e An initial system can keep up to 20 snapshots
o Use snapshots to recover individual files

An example

phoenix% cd .snapshot

phoenix% 1s

hourly.0 hourly.2 hourly.4 nightly.0 nightly.2 weekly.l1l

hourly.l hourly.3 hourly.5 nightly.1l weekly.O0
phoenix%

Q: How much space does a snapshot consume?

I-node, Indirect and Data Blocks

WAFL uses 4KB blocks

e i-nodes (evolved from UNIX's)
o Data blocks

File size < 64 bytes

e i-node stores data directly

File size < 64K bytes

e I-node stores 16 ptrs to data
File size < 64M bytes

e I-node: 16 ptrs to indirect blocks
o Each stores 1K pointers to data
File size > 64M bytes

e I-node: ptrs to doubly indirect blocks

Note: each type points to all blocks at
same level

Data |
Data Data
A4 \4
Data Data Data
Data Data Data

WAFL Layout

+ A WAFL file system has

e A root i-node: root of everything
e An i-node file: contains all i-nodes)
o A block map file: indicates free blocks

e An i-node map file: indicates free i-nodes

Metadata
in files

J

bl

Block I-node Other files in the file system
map file map file

10

Why Keep Metadata in Files

Q00
Allow meta-data blocks to be written anywhere on disk

e This is the origin of “Write Anywhere File Layout”
e Any performance advantage?
Easy to increase the size of the file system dynamically
e Adding a disk can lead to adding i-nodes
e Integrate volume manager with WAFL

Enable copy-on-write to create snapshots
o Copy-on-write new data and metadata on new disk locations
o Fixed metadata locations very cumbersome for this

Q: Any exception to “write anywhere?”

11

Snapshot Implementation

+ WAFL file system is a tree of blocks
+ Snapshot step 1

e Replicate the root i-node
e New root i-node is the active file system
e Old root i-node is the snapshot

+ Snapshot step 2...n

o Copy-on-write blocks to the root
o Active root i-node points to the new blocks
e Writes to the new block

File System Consistency

_ _ _ 00
Create a "consistency point” or hidden snapshot

o Create a consistency point or snapshot every 10 seconds
e On a crash, revert the file system to this snapshot
e Not visible to users

Many requests between consistency points
e Consistency point i
o Many writes

e Consistency point i+1 (advanced atomically)
e Many writes

13

Non-Volatile RAM

Different types
e Flash memory (slower)
o Battery-backed DRAM (fast but battery lasts for only days)

Use an NVRAM to log writes

e Log all write requests since the last consistency point

e A clean shutdown empties NVRAM, creates one more
snapshot, and turns off N\VRAM

e A crash recovery needs to replay log to recover data from
NVRAM to the most recent snapshot and turn on the system

14

Write Allocation

Q00
WAFL can write to any blocks on disk

o File metadata (i-node file, block map file and i-node map file)
are in files

WAFL can write blocks in any order

e Rely on consistency points to enforce file consistency

e NVRAM to buffer writes to implement ordering
WAFL can allocate disk space for many NFS operations
at once in a single write episode

e Reduce the number of disk I/Os

o Allocate space that is low latency

15

Snhapshot Data Structure
o060

+ WAFL uses 32-bit —
: : : : ock map oy
entries in block map file | Time entry | Description

» 32-bitforeach 4K block | 11 100000000 |Blockis free

e 32-bit entry = 0: the disk T2 |0000000 1 |Active FS uses it
block is free T3 |00000011|Create snapshot 1
¢ Bit0 =1 T4 00000111 |Create snapshot 2
T T5 |00000110 |Active FS deletes it
active file system T6 |00000100 | Delete snapshot 1
references the block T7 00000000 | Delete snapshot 2

¢ Bit1=1:

the most recent snapshot L Set for active FS
references the block

— Set for snapshot 1

— Set for snapshot 2

— Set for snapshot 3

[ZErp (IGET)

A G

Snapshot Creation

00
Problem

« Many NFS requests may arrive while creating a snapshot
o File cache may need replacements
o Undesirable to suspend the NFS request stream

WAFL solution

o Before a creation, mark dirty cache data “in-snapshot” and
suspend NFS request stream

o Defer all modifications to “in-snapshot” data
o Modify cache data not marked “in-snapshot”
e Do not flush cache data not marked “in-snapshot”

17

Algorithm

Steps
o Allocate disk space for “in-snapshot” cached i-nodes
« Copy these i-nodes to disk buffer
» Clear “in-snapshot” bit of all cached i-nodes
o Update the block-map file
« For each entry, copy the bit for active FS to the new snapshot
e Flush

« Write all “in-snapshot” disk buffers to their new disk locations
* Restart NFS request stream

e Duplicate the root i-node

Performance
e Typically it takes less than a second

(IGET)

TR

Snapshot Deletion

Delete a snapshot’s root i-node

Clear bits in block-map file

e For each entry in block-map file, clear the bit representing the
shapshot

19

Performance

O 0O
¢+ SPEC SFS benchmark shows 8X faster than others

S0 e FAServer X Cluster

T 454 Auspex NS 8000

ﬁ = Sun SPARCcluster 1

E T |==SunSPARCenter 2000
® 18 — Sun SPARCserver 1000
E

- 30 Y

n

e 25

a

w 20=

o

(™)

m 1 5 L]

on

T 10+

)

o=

o

0 500 1000 1500 2000 2500 J000 as00

NFS operations/second

20

Summary

Journaling and LFS
e Journaling uses transactions to achieve consistency
e LFS improves write performance

WAFL

o Write anywhere layout (inspired by LFS)
e Snapshots have become a standard feature
e Journaling with NVRAM

21

