
Assignment #5
Due: 12:00 noon EDT, Oct 26, 2020

Upload at: https://www.gradescope.com/courses/135869/assignments/746434

Remember to append your Colab PDF as explained in the first homework, with all outputs visible.
When you print to PDF it may be helpful to scale at 95% or so to get everything on the page.

Problem 1 (18pts)
We sometimes need to introduce norms for matrices. This comes up when we want to talk about the magnitude
of a matrix, or when we need a notion of distance between matrices. One important matrix norm is the Frobenius
norm, which can be written as the square root of the sum of squared matrix elements for a matrix A ∈ R<×=:

| |A| |� =

√√√ <∑
8=1

=∑
9=1

�2
8, 9

It turns out that there is a particularly compact and elegant way to rewrite this:

| |A| |� ==
√
trace(A) A)

(A) Show that the Frobenius norm is also the square root of the sum of the squared singular values.

(B) Assume that A is square and invertible, but with a very small Frobenius norm. What kind of value would
you expect to get for the Frobenius norm of A−1?

1

https://www.gradescope.com/courses/135869/assignments/746434

Problem 2 (40pts)
In this problem you will use SVD to model a text corpus, a small subset of New York Times articles. You will use
a “bag of words” representation in which documents are represented by the counts of words, usually excluding
very common “stop words” like the and and. Download nyt.pkl.gz and upload it to your Google drive so you
don’t have to upload it every time you open the Colab; it’s a fairly big file. Here’s some code to get you going:

impo r t p i c k l e a s pk l
impo r t numpy as np
impo r t g z i p

f i l e n ame = ’ d r i v e /My Dr ive /COS 302 / ny t . pk l . gz ’
wi th g z i p . open (f i l ename , ’ rb ’) a s fh :

ny t = pk l . l o ad (fh)
documents = ny t [’ docs ’]
vocab = ny t [’ vocab ’]

C r e a t e r e v e r s e lookup t a b l e .
v o c a b _ i n d i c e s = d i c t ([(w, i) f o r (i , w) i n enumera t e (vocab)])

M = l e n (documents)
N = l e n (vocab)
p r i n t (’%d documents , %d words ’ % (M,N))

coun t_mat = np . z e r o s ((M,N))
f o r mm, doc i n enumera t e (documents) :

f o r word , coun t i n doc . i t ems () :
coun t_mat [mm, v o c a b _ i n d i c e s [word]] = coun t

(A) Typically, raw counts don’t lead to discovery of interesting structure. Instead, it is common to use something
like TF-IDF, which stands for term frequency-inverse document frequency. Term frequency is the number
of times word = appeared in document <, divided by the total number of words in document <.

tf<,= =
times word = appears in doc <

total # of words in doc <

Transform count_mat from the code above into a term frequency matrix.

(B) Inverse document frequency is typically the natural log of the number of documents, divided by the number
of documents in which word < appears. (The plus-one ensures that you’re not dividing by zero.)

idf= = log
total # of documents

1 + # of documents with word =

Compute the idf vector from count_mat.

(C) Now compute the TF-IDFmatrix bymultiplying (broadcasting) tf<,= and idf=. Usenumpy.linalg.svd
to take the SVD of this TF-IDF matrix; it may take a minute since the matrix is relatively large. Plot the
singular values in decreasing order.

(D) The right singular vectors (columns of the V matrix) will ideally represent interesting topical dimensions.
For each of the top 20 right singular vectors: identify the words in the vocabulary that have the largest entries
in the vector and print them. That will probably mean looping over the first 20 right singular vectors, doing
an appropriate argsort and then finding that entry in the vocab variable. Do you see any interesting
qualitative structure in these groups of words?

2

https://www.cs.princeton.edu/courses/archive/fall20/cos302/files/nyt.pkl.gz
https://en.wikipedia.org/wiki/Tf-idf
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.svd.html

Problem 3 (40pts)
In various data analysis problems, it is often easier to reason about the pairwise distances between data, rather
than features of the data directly. This comes up particularly when dealing with discrete data where there aren’t
vectors, but perhaps there is a sensible concept of distance. A prime example is strings, in which there are
various sensible edit distances. We previously examined principal component analysis (PCA) as a way to find
low-dimensional representations of data, but if you only have distances, vanilla PCA doesn’t apply. Instead, the
classic approach is to use principal coordinates analysis, also called multidimensional scaling (MDS) to map the
data to R3 in such a way that the pairwise distances are approximately preserved. That is, you are given a matrix
of squared distances D ∈ R=×=, and your goal is to discover reasonable locations {x8}=8=1 for, say, x ∈ R2, so
that �8 9 ≈ ||x8 − x 9 | |22. The details of MDS are beyond the scope of this course, but the steps are straightforward
applications of tools that you’ve been learning to use in COS 302.

(1) Compute a squared distance matrix D.

(2) Subtract off the column-wise means and then the row-wise means of D, i.e., perform “double centering”.
Be sure to compute the row-wise means after you’ve subtracted the column-wise means.

(3) Compute the largest eigenvalues _1,_2, . . . and associated eigenvectors v1, v2, . . . of − 1
2 D.

(4) The 9 th entry of the vector
√
_8v8 can now be used as the 8th coordinate of x 9 . That is, for mapping data

into R2, you would form a = × 2 matrix X =
[√
_1v1

√
_2v2

]
whose rows are locations to embed each

datum.

In this problem, you’re going to take a list of strings, find edit distances between them all, and then make a
visualization of them in R2. By default, you can use dog_names1000.txt, a list of dog names taken from a
random subset of registered dogs in Anchorage, Alaska; you can use any list of strings you want, however, as long
as it has at least 500 or so entries: lists of cities, street names, metal bands, etc. You’ll need to figure out how to
load the string from file into a list, but then the function below will compute a squared distance matrix for you.

impo r t numpy as np
impo r t e d i t d i s t a n c e
de f s q _ d i s t a n c e s (names) :

’ ’ ’ Takes a l i s t o f s t r i n g s . Re t u r n s s qua r ed e d i t d i s t a n c e s . ’ ’ ’
N = l e n (names)
s q _ d i s t s = np . z e r o s ((N,N))
f o r i i , name1 i n enumera t e (names) :

f o r j j , name2 i n enumera t e (names [: i i]) :
s q _ d i s t s [i i , j j] = (e d i t d i s t a n c e . e v a l (name1 , name2) \

/ np . maximum (l e n (name1) , l e n (name2))) ∗∗2
s q _ d i s t s [j j , i i] = s q _ d i s t s [i i , j j]

r e t u r n s q _ d i s t s

Implement the MDS procedure above to put your strings into locations in R2 and then plot them. Assuming you
have a = × 2 matrix X, the code below should get you started making the figure.

impo r t m a t p l o t l i b . p y p l o t a s p l t
p l t . f i g u r e (f i g s i z e = (20 , 20))
p l t . p l o t (X[: , 0] , X[: , 1] , ’ . ’)
f o r i i i n r ange (n) :

p l t . t e x t (X[i i , 0] , X[i i , 1] , names [i i] , f o n t s i z e =10)
p l t . show ()

3

https://en.wikipedia.org/wiki/Edit_distance
https://en.wikipedia.org/wiki/Multidimensional_scaling
https://www.cs.princeton.edu/courses/archive/fall20/cos302/files/dog_names1000.txt
https://catalog.data.gov/dataset/dog-names
https://github.com/OpenJarbas/metal_dataset

Problem 4 (2pts)
Approximately how many hours did this assignment take you to complete?

My notebook URL: https://colab.research.google.com/XXXXXXXXXXXXXXXXXXXXXXX

Changelog

• 21 October 2020 – Fixed sample code and clarified double centering in Problem 3.
• 9 October 2020 – Updated for Fall, 2020.
• 5 March 2020 – Initial version.

4

https://colab.research.google.com/XXXXXXXXXXXXXXXXXXXXXXX

