A l g Or 1 [h 1IMSs ROBERT SEDGEWICK | KEVIN WAYNE

DYNAMIC PROGRAMMING

» introduction

» Fibonacci numbers

» interview problems

» shortest paths in DAGs
Ronrr Sepcrvic | Kpvs W » shortest paths in digraphs

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

DYNAMIC PROGRAMMING

» introduction

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Dynamic programming

Algorithm design paradigm.
- Break up a problem into a series of overlapping subproblems.
 Build up solutions to larger and larger subproblems.

(caching solutions to subproblems for later reuse)

Application areas.

- Operations research: multistage decision processes, control theory,

« Computer science: Al, compilers, systems, graphics, theory,
« Economics.

« Bioinformatics.
- Information theory.

« Tech job interviews.

Bottom line. Powerful technique; broadly applicable.

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time ¢ is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

Richard Bellman, *46

optimization, ...

Dynamic programming algorithms

Some famous examples.
« Needleman-Wunsch/Smith-Waterman for sequence alignment.
« Cocke-Kasami-Younger for parsing context-free grammars.
« Knuth-Plass for word wrapping text in ZgX.
- Bellman-Ford-Moore for shortest path.
- De Boor for evaluating spline curves.
 Viterbi for hidden Markov models.
« Unix diff for comparing two files.
« Avidan-Shamir for seam carving.

- NP-hard graph problems on trees (vertex color, vertex cover, independent set, ...).

ACTCGCAATATGCTAGGCCAGC

ACT TTATGCTATGC G C

ACTTGTCTTATGC ’V’\
ACT G TTA__C/

- biopython

Dynamic programming books

PRINCETON [ANOMARKS
IN MATHEMATICS

Dynamic
Programming

Applied Dynamic
Programming for
Optimization of
Dynamical Systems

Rush D. Robinett HlI
David G.Wilson
G. Richard Eisler
John E. Hurtado

The Art

and Theory
of Dynamic
Programming

Stuart E. Dreyfuse
Averill M, Law

Lt £ s pout 4t [e g

Huaguang Zhang
Derong Liu
Yashong Luo
Ding Wang

L LE
“En
e

.

.
"
"
1

} Adaptive Dynamic

Programming
for Control

Algorithms and Stability

: Introduction.to
-, Dynamic

Southern Methodist University, Dallcs, Te:

DYNAMIC

PROGRAM

G bl

1

Programming

.: Leon Cooper and Mary W Cooper o

O e
T R
IN i

Models and Applications

STHY

Dynamic
Programming:

Sequential Decision
Making

Williams, Kenneth

Note: This is not the actual book cover

Operations Research/Computer Science Interfaces Series

Marlin Wolf Ulmer

Approximate Dynamic
Programming for

Dynamic Vehicle
Routing

@ Springer

Comyeistitnd M &
WILEY PURE AND APPLIED MATHEMATICS
; A SERIES OF MONOGRAPHS ANO TEXTBOOKS

Dynamic Programming
Foundations and Principles
Second Edition

Markov Decision Processes

Discrete Stochastic
Dynamic Programming

1 At
- S
MARTIN L. PUTERMAN N _—

Moshe Sniedovich

WILEY SERIES IN PROBABILITY AND STATISTICS CRC Press

Taycn Py Gringp
APMAN & HALL

Comyrigttng Batorial

AFLFUIFUNF NG NSNS AGA

Dynamic Programming
with Management
Applications
(Operational Research)

Hastings, N.A.J.

SPRINGER BRIEFS IN QUANTITATIVE FINANCE

AFUNF SN U NSNS NN

Dynamic
Programming and
Markov Processes

Nora Muler
Stochastic
~ Optimization in
Insurance

A Dynamic
Programming
Approach

AN\ ot
) Springer

SECOND EDITION

Approximate Dynamic
Programming

Solving the Curses of Dimensionality

Warren B. Powell

Wiley Series in Probability and Statisti

PWILEY WWW,

HANDBOOK oF
LEARNING

AND APPROXIMATE
DYNAMIC
PROGRAMMING

EDITED BY
JENNIE SI

ANDREW G. BARTO
WARREN B. POWELL
DONALD WUNSCH Il

CHAPMAN & HALUCRC
Monographs and Surveys in
Pure and Applied Mathematics 110

ITERATIVE
DYNAMIC
PROGRAMMING

REIN LUUS

CHAPMAN & HALUCRC

DYNAMIC PIE%ERHMMING

INTERVIEW

R BOTTOM-UP RPPRORCH TO PROBLEM SOLVING

A
V

MEENAKSHI & KAMAL RAWAT
FOUNOER. RITAMBHARA TECHNOLOGES @)

Dynamic Programming
and Optimal Control

Dimitri P. B¢

NEURO-DYNAMIC
PROGRAMMING

DIMITRI P BERTSEKAS
JOHN N. TSITSIKLIS

pp. 284-289

DYNAMIC PROGRAMMING

» Fibonacci numbers

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Fibonacci numbers

Fibonacci numbers. 0,1,1,2,3,5,8, 13,21, 34, 55, 89, ...

0 if ¢
F,=<1 if =1
F, 1+ F,_o if 1>1

|
S

Leonardo Fibonacci

Fibonacci numbers: naive recursive approach

Fibonacci numbers. 0,1,1,2,3,5,8,13,21, 34, 55,89, ...

0 if :=20
F,=<1 if =1
F, 1+ F,_o if 1>1

Goal. Given n, compute F,.

Naive recursive approach:

public static long fib(int 1)
{
1if (1 == 0) return O;:
1if (1 == 1) return 1:
return fib(1-1) + fib(1-2);

Dynamic programming: quiz |

How long to compute fib(75) using the naive recursive algorithm?

A. Less than 1 second.
B. 1 minute.
C. More than 1 year.

D. Result won'’t fit in a 64-bit Tong integer.

Fibonacci numbers: recursion tree and exponential growth

Exponential waste. Same overlapping subproblems are solved repeatedly.
EX.

To compute fib(6):

fib(5) is called 1 time.

fib(4) is called 2 times.

fib(3) is called 3 times.

fib(2) is called 5 times.

fib(1) is called F, = F, =8 times.

E, ~ ¢", ¢= 9 ~

running time = # subproblems x cost per subproblem

1.613

10

Fibonacci numbers: top-down dynamic programming

Memoization.
- Maintain an array (or symbol table) to remember all computed values.
. If value to compute is known, just return it;

otherwise, compute it; remember it; and return it.

public static long fib(int 1)

{
1if (1 == 0) return O:
1if (1 == 1) return 1;
1f (f[1] == 0) f[1] = fib(1-1) + fib(1-2);
return f[1];
¥

Impact. Solves each subproblem F; only once; ®(n) time to compute F,.

11

Fibonacci numbers: bottom-up dynamic programming

Bottom-up dynamic programming.
« Build computation from the “bottom up.”
« Solve small subproblems and save solutions.

» Use those solutions to solve larger subproblems.

public static long fib(int n)

{
long[] f = new long[n+1];
f[0] = O;
f[1] = 1,

for (int 1 = 2; 1 <= n; 1++)
fl[i] = f[1-1] + f[i-2];:
return f[n];

Impact. Solves each subproblem F; only once; ®(n) time to compute F,; no recursion.

12

Fibonacci numbers: further improvements

Performance improvements.

« Save space by saving only two most recent Fibonacci numbers.

public static long fib(int n) {
int f =1, g=0;
for (Aint 1 =1; 1 < n-1; 1++) {

= f + 9;
g="*-g9;
}
return f;

- Exploit additional properties of problem:

(5] 4E G

13

Dynamic programming recap

Dynamic programming.
- Divide a complex problem into a number of simpler overlapping subproblems.

(define n + 1 subproblems, where subproblem i is computing the i Fibonacci number)

- Define a recurrence relation to solve larger subproblems from smaller subproblems.

(easy to solve subproblem i if we know solutions to subproblems i—-1 and i —2)

0 it 1 =20
Hy; =< 1 it 1 =1
FrL'_l—I—FZ'_Q if ¢ >1

 Store solutions to each of these subproblems, solving each subproblem only once.

(use an array fib[i] to store solution to subproblem i)

« Use stored solutions to solve the original problem.

(subproblem n is original problem)

DYNAMIC PROGRAMMING

Algorithms » interview problems

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

HOUSE COLORING PROBLEM

Goal. Paint a row of n houses red, green, or blue so that:
« Minimize total cost, where cost(i, color) is cost to paint i given color.

- No two adjacent houses have the same color.

adaaaan
2 345 | 6
cosi(i, red) 7 (6 7 9 20

cost(i, green) 8 9 22 12
cost(i, blue) 16 10 2 7

cost to paint house i the given color
3+6+4+8+5+ 8 =34)

16

HOUSE COLORING PROBLEM: DYNAMIC PROGRAMMING FORMULATION

Goal. Paint a row of n houses red, green, or blue so that:
« Minimize total cost, where cost(i, color) is cost to paint i given color.

- No two adjacent houses have the same color.

Subproblems.
* R(i) = min cost to paint houses 1,...,i with i red.
* G(i) = min cost to paint houses 1, ...,i with i green.
e B(i) = min cost to paint houses 1,...,i with i blue.
e Optimal cost = min { R(n), G(n), B(n) }.

Dynamic programming recurrence.
e R(G@) = cost(i,red) + min{G@G-1), Bi—1)}
* G(i) = cost(i,green)+ min{B(i—1), RG—-1) }
e B(i) = cost(i,blue) + min{R(Gi-1), GG-1)}

17

HOUSE COLORING: NAIVE RECURSIVE IMPLEMENTATION

A mutually recursive implementation.

private int red(int 1
1t (1 0) return O
return cost[1][RED Math.min(green(1-1), blue(1-1

}

private int green(int 1
1t (3 0) return O
return cost[1][GREEN Math.min(red(i-1 blue(1-1

¥
private int blue(int 1
1t (1 0) return O
return cost[1][BLUE Math.min(red(1-1), green(1-1

}

public 1nt optimalValue
return min3(red(n blue(n), green(n

}

18

Dynamic programming: quiz 2

What is running time of the naive recursive algorithm as a function of n?

A. O
B. 0Om?
C. 06@2Y

D. O!)

19

Dynamic programming aphorism

“Those who cannot remember the

past are condemned to repeat it. ”

— Dynamic Programming

(Jorge Agustin Nicolas Ruiz de Santayana y Borras)

HOUSE COLORING: BOTTOM-UP IMPLEMENTATION

Bottom-up implementation.

1nt r hew 1nt[n+1
1nt g new 1nt[n+1
int b hew 1nt[n+1

for (Aint i = 1; 1 <= n; i++) {

rli cost[1][RED Math.min(g[1-1], b[1-1
gli cost|[1] [GREEN Math.min(b[1-1 ri1-1
b1 cost[1][BLUE Math.min(r[1-1], g[1-1

return min3(r[in], gln], bl[n

Proposition. The bottom-up DP algorithm takes ®(n) time.

21

HOUSE COLORING: RECONSTRUCTING THE SOLUTION (BACKTRACE)

So far: we’ve computed the value of the optimal solution.

Still need: the solution itself (which color to paint each house).

cost to paint houses 1, 2, ..., i with house i the given color

22

COIN CHANGING

Problem. Given n coin denominations { d,,d,,...,d,} and a target value V,

find the fewest coins needed to make change for V (or report impossible).

Ex. Coin denominations = {1, 10, 25, 100 }, V = 130.
Greedy (8 coins). 131¢=100+25+1+1+1+1+1+1.
Optimal (5 coins). 131¢ =100+ 10+ 10 + 10 + 1.

vending machine
(out of nickels)

5 coins
(131¢)

8 coins
(131¢)

Useful fact. Greedy algorithm is optimal for U.S. coin denominations {1, 5, 10, 25, 100 }.

23

COIN CHANGING: DYNAMIC PROGRAMMING FORMULATION

Problem. Given n coin denominations { d,,d,,...,d,} and a target value V,

find the fewest coins needed to make change for V (or report impossible).

Subproblems. OPT(v) = fewest coins needed to make change for amount v.
Optimal value. OPT(V).

Multiway choice. To compute OPT(v),

» Select a coin of denomination d; <v for some i.
< take best

« Use fewest coins to make change for v — d..

AN

Dynamic programming recurrence. optimal substructure

00 it v <0

1I§nz'1£n{1+OPT(v_di)} if v >0

24

COIN CHANGING: BOTTOM-UP IMPLEMENTATION

Bottom-up DP implementation.

1nt[] opt new 1nt[V+1

for (Aint v=1;,v V; v
opt[v Integer.MAX_VALUE 00 it v <0
for (int 1 1; 1 n; 1 ,
OPT(v) = ¢ 0 if v=20
if (d[1 v) continue 1I<n,i£1 {1+0PT(v—d;)} ifv>0

1t (optlv 1 + opt[v - d[1
opt|v 1 + optlv - d[1

Running time. The bottom-up DP algorithm takes ©®(n V) time.

Note. Not polynomial in input size (and no poly-time algorithm is known).

25

DYNAMIC PROGRAMMING

Algorithms
» shortest paths in DAGs

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Shortest paths in directed acyclic graphs: dynamic programming formulation

Problem. Given a DAG with positive edge weights, find shortest s~v path for each vertex v.
Subproblems. distTo(v) =length of shortest s~v path.

Goal. distTo(v) for each v.

Multiway choice. To compute distTo(v) :

» Select an edge e = u—v entering v.

oy
< take best

« Combine with shortest s~u path.

|

optimal substructure

& © ®
)

Dynamic programming recurrence.

0 it v=-s=s

distTo(v) =
min { distTo(u) + weight(e) } if v # s

€ = U—>v

27

Shortest paths in directed acyclic graphs: bottom-up solution

Bottom-up DP algorithm. Takes ®(E + V) time and space with two tricks:
« Solve subproblems in topological order.

* Form reverse digraph G® to iterate over edges incident to vertex v.

Finding shortest paths. @
« Traceback: distTo[v] == distTo[u] + e.weight().
. Or, maintain edgeTo[] array, as in Dijkstra / Bellman—-Ford. 25 @ 2 @ 27

Equivalent (but simpler) computation. Relax vertices in topological order.

Topological topological = new Topological (G);
for (int v : topological.order())

for (DirectedEdge e : G.adj(v))
relax(e):

28

Dynamic programming: quiz 3

How to efficiently find longest path from s to every other vertex in a DAG?

D} \@/,

longest paths problem in a DAG (all weighs = 1)

A. Negate edge weights and use DP algorithm to find shortest paths.
B. Replace min with max in DP recurrence.
C. Either A or B.

D. No poly-time algorithm is known (NP-complete).

29

Shortest paths in DAGs and dynamic programming

DP subproblem dependency digraph.
« Vertex v for each subproblem v.
- Edge v—w, if subproblem w depends on subproblem v.
« Digraph must be a DAG. Why?

Ex 1. Modeling the coin changing problem as a shortest path problem in a DAG.

(Y@ o0 ORR

V = 10; coin denominations ={ 1,5, 8 }

30

Shortest paths in DAGs and dynamic programming

DP subproblem dependency digraph.
« Vertex v for each subproblem v.
- Edge v—w, if subproblem w depends on subproblem v.
« Digraph must be a DAG. Why?

Ex 2. Modeling the house paining problem as a shortest path problem in a DAG.

Z\ Z\
s
s ‘\ /\ e
() ()

1 2 3 4 5 6

31

Seam carving

Problem. Find a min energy path from top to bottom.
Subproblems. distTo(col, row) = energy of min energy path from any top pixel to pixel (col, row).
Goal. min { distTo(col, H-1) }.

seam

32

DYNAMIC PROGRAMMING

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE } ShOrfeSf pafhs in digraphs

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Dynamic programming: quiz 4

Let G be an arbitrary digraph with positive edge weights.

Consider the following DP recurrence:

0 it v=-s
distTo(v) =
min { distTo(u) + weight(e)} if v # s

€ = U—

Why does it not lead to an efficient algorithm for the shortest paths problem?

A. Invalid recurrence.
B. Leads to an exponential-time algorithm.
C. Need order in which to solve subproblems.

D. It does and algorithm takes ®(E + V) time.

34

SHORT SHORTEST PATHS

Goal. Given a digraph G with positive edge weights and a source vertex s,

find a shortest path from s to each vertex v that uses <k edges.

15

s (0) : (1) K =0: (0)

o 9 k =1: s—ov (15)

| ; @ y k =2: s=»3-v (13)
k =3: s=92—-23-v (11)

) 3 k=4 so2-1-3-v (10)

@ 7 @ k=5 s»2-1-3-v (10)

35

Short shortest paths in digraphs: dynamic programming formulation

Problem. Length of shortest s~v path that uses < k edges.

Subproblems. distTo(v, i) =length of shortest s~v path that uses <i edges.

Goal. distTo(v, k) for each vertex v.

Multiway choice. To compute distTo(v, i) :

» Select an edge e = u—v entering v.
< take best
« Combine with shortest s~u path that uses <i -1 edges.
optimal substructure
Dynamic programming recurrence.
0 ifv=-s
distTo(v, 1) = 00 if i =0and v # s

min { distTo(u, t — 1) + weight(e) } if7>0

E=u—7v

10

&) ©

36

Dynamic programming: quiz 5 '\,

In which order to compute distTo(v, 1) ?

for (int 1 =1; 1 <= k; 1++)
A. Increasing i, then v. for (int v = 0; v < G.VO; v++)
distTo[v][i] = ...
B. Increasing v, then i.

C. Either A or B. for (int v =0: v < G.VO: vi+)

for (int 1 = 1; 1 <= k; 1++)

D. Neither A nor B. distTo[v][il = ...

0 itv=s
distTo(v, 1) = 00 if i =0 and v # s
min { distTo(u, t — 1) + weight(e) } if7>0

E=u—7v

37

Short shortest paths in digraphs: properties

Running time. DP algorithm takes ®(k E + V) time.

Easy to modify DP algorithm to find the shortest path itself (not just the length).
« Approach 1: traceback.

« Approach 2: maintain edgeTo[v][i] entries along with distTo[v][i].

38

Shortest paths: Bellman-Ford vs. dynamic programming

DP algorithm can be used to solve single-source shortest paths problem.

 Choose k=V-1.
« Takes ®O(E V) time and uses O(E V) extra space.

Bellman—-Ford can be viewed as DP algorithm, plus a few optimizations.
« Space optimization: uses a one-dimensional array distTo[].

« Reorders computation: relaxes all edges incident from v.

- Performance optimization: uses a queue to avoid unnecessary work.

« Takes O(E V) time and uses ©(V) extra space.

39

Summary

How to design a dynamic programming algorithm.

-

Find good subproblems. {/
Develop DP recurrence.

— optimal substructure

— overlapping subproblems

Determine order in which to solve subproblems.

Cache computed results to avoid unnecessary re-computation.

Reconstruct the solution: backtrace or save extra state.

40

© Copyright 2020 Robert Sedgewick and Kevin Wayne

