
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 11/18/20 11:16 AM

ALGORITHM DESIGN

‣ analysis of algorithms

‣ greed

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomization
https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Algorithm design

Algorithm design patterns.

独Analysis of algorithms.

独Greed.

独Network flow.

独Dynamic programming.

独Divide-and-conquer.

独Randomization.

Want more? See COS 340, COS 343, COS 423, COS 445, COS 451, COS 488, .…

2

INTERVIEW QUESTIONS

3

ALGORITHM DESIGN

‣ analysis of algorithms

‣ greed

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomization

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

EGG DROP

Goal. Find T using fewest drops.

5

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

threshold floor

EGG DROP

Goal. Find T using fewest drops.

Variant 0. 1 egg.

Solution. Use sequential search: drop on floors

1, 2, 3, … until egg breaks.

Analysis. 1 egg and T drops.

6

n

.

.

.

T

.

.

.

.

3

2

1

running time depends upon

a parameter that you don’t know a priori

breaks

does not
break

EGG DROP

Goal. Find T using fewest drops.

Variant 1. ∞ eggs.

Solution. Binary search for T.

独Initialize [lo, hi] = [0, n+1].

独Maintain invariant: egg breaks on floor hi but not on lo.

独Repeat until length of interval is 1:

– drop on floor mid = (lo + hi) / 2.

– if it breaks, update hi = mid.

– if it doesn’t break, update lo = mid.

Analysis. ~ log2 n eggs, ~ log2 n drops.

7

Suppose T is much smaller than n.
Can you guarantee Θ(log T) drops?

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

EGG DROP

Goal. Find T using fewest drops.

Variant 1′. ∞ eggs and Θ(log T) drops.

Solution. Use repeated doubling; then binary search.

独Drop on floors 1, 2, 4, 8, 16, …, x to find a floor

x such that the egg breaks on floor x but not on ½ x.

独Binary search in interval [½ x, x].

Analysis. ~ log2 T eggs, ~ 2 log2 T drops.

独Repeated doubling: 1 egg and 1 + log2 x drops.

独Binary search: ~ log2 x eggs and ~ log2 x drops.

独Note that T ≤ x < 2T.

8

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

Algorithm design: quiz 1

Goal. Find T using fewest drops.

Variant 2. 2 eggs.

In worst case, how many drops needed as a 
function of n?

A. Θ(1)

B. Θ(log n)

C. Θ()

D. Θ(n)

9

p
n

<latexit sha1_base64="19RJT8B+LATTAWXFMhiGPyaBiaI=">AAACMHicbVDLTsJAFJ36RHwBLt00EhNXpPURWZK4cYmJPBJoyHR6CxOm0zpzayANP+FWv8Kv0ZVx61dYShcCnmSSk3PunXvvcSPBNVrWp7GxubW9s1vYK+4fHB4dl8qVtg5jxaDFQhGqrks1CC6hhRwFdCMFNHAFdNzx3dzvPIPSPJSPOI3ACehQcp8ziqnU7esnhYmcDUpVq2ZlMNeJnZMqydEclI1K3wtZHIBEJqjWPduK0EmoQs4EzIr9WENE2ZgOoZdSSQPQTpItPDPPU8Uz/VClT6KZqX87EhpoPQ3ctDKgONKr3lz8z+vF6NedhMsoRpBsMciPhYmhOb/e9LgChmKaEsoUT3c12YgqyjDNaGlK9ncEbOmSZBJLzkIPVlSBE1R0nqK9mtk6aV/W7KvazcN1tVHP8yyQU3JGLohNbkmD3JMmaRFGBHkhr+TNeDc+jC/je1G6YeQ9J2QJxs8vvDGrAA==</latexit>

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

EGG DROP (ASYMMETRIC SEARCH)

Goal. Find T using fewest drops.

Variant 2. 2 eggs.

Solution. Use gridding; then sequential search.

独Drop at floors

until first egg breaks, say at floor .

独Sequential search in interval .

Analysis. At most drops.

独First egg: ≤ drops.

独Second egg: ≤ drops.

Signing bonus 1. Use 2 eggs and at most drops.

Signing bonus 2. Use 3 eggs and at most 3 n1/3 drops.

10

p
2n

<latexit sha1_base64="Ar6eiC74UkVQbsb3vW7Do6Zen0I=">AAACMXicbVDLTsJAFJ36RHwBLt00EhNXpEWNLEncuMREHgYaMh0uMGE6rTO3BtLwFW71K/wadsatP2FbuhDwJJOcnHPv3HuPGwiu0bIWxtb2zu7efu4gf3h0fHJaKJZa2g8Vgybzha86LtUguIQmchTQCRRQzxXQdif3id9+BaW5L59wFoDj0ZHkQ84oxtJzT78ojKpy3i+UrYqVwtwkdkbKJEOjXzRKvYHPQg8kMkG17tpWgE5EFXImYJ7vhRoCyiZ0BN2YSuqBdqJ047l5GSsDc+ir+Ek0U/VvR0Q9rWeeG1d6FMd63UvE/7xuiMOaE3EZhAiSLQcNQ2GibybnmwOugKGYxYQyxeNdTTamijKMQ1qZkv4dAFu5JJqGkjN/AGuqwCkqmqRor2e2SVrVin1duX28KddrWZ45ck4uyBWxyR2pkwfSIE3CiEfeyDv5MD6NhfFlfC9Lt4ys54yswPj5BTzyqzw=</latexit>

p
n, 2

p
n, 3

p
n, . . .

<latexit sha1_base64="23CrmC8HrhMb6VmU/t9u0Q2tPm4=">AAACYHicbVDLSgMxFE3HV62vVne6CRbBhZQZFS24Edy4VLC20Cklk7nVYCYZkztiGfonfo1b/QG3folp7cJOPRA499xX7olSKSz6/lfJW1hcWl4pr1bW1jc2t6q17XurM8OhxbXUphMxC1IoaKFACZ3UAEsiCe3o6Wqcb7+AsUKrOxym0EvYgxIDwRk6qV89C+2zwVyNjmh4EV7Q40J8UohpKGONtl+t+w1/AjpPgimpkylu+rXSdhhrniWgkEtmbTfwU+zlzKDgEkaVMLOQMv7EHqDrqGIJ2F4+OXBED5wS04E27imkE/VvR84Sa4dJ5CoTho+2mBuL/+W6GQ6avVyoNENQ/HfRIJMUNR27RWNhgKMcOsK4Ee6vlD8ywzg6T2e2TGanwGcuyV8zJbiOoaBKfEXDRs7FoOjZPLk/bgSnjebtaf2yOfWzTPbIPjkkATknl+Sa3JAW4eSNvJMP8ln69srellf7LfVK054dMgNv9wfhQLfy</latexit>

p
n

<latexit sha1_base64="NNWQZ0wyzQNdMZP8L0uenrvxvNE=">AAACMHicbVDLTsJAFJ3iC/EFuHTTSExckdaQyJLEjUtM5JEAIdPpLUyYTuvMrYE0/IRb/Qq/RlfGrV9hW7oQ8CSTnJxz79x7jxMKrtGyPo3Czu7e/kHxsHR0fHJ6Vq5UuzqIFIMOC0Sg+g7VILiEDnIU0A8VUN8R0HNmd6nfewaleSAfcRHCyKcTyT3OKCZSf6ifFMZyOS7XrLqVwdwmdk5qJEd7XDGqQzdgkQ8SmaBaD2wrxFFMFXImYFkaRhpCymZ0AoOESuqDHsXZwkvzKlFc0wtU8iSamfq3I6a+1gvfSSp9ilO96aXif94gQq85irkMIwTJVoO8SJgYmOn1pssVMBSLhFCmeLKryaZUUYZJRmtTsr9DYGuXxPNIcha4sKEKnKOiaYr2ZmbbpHtTtxv15kOj1mrmeRbJBbkk18Qmt6RF7kmbdAgjgryQV/JmvBsfxpfxvSotGHnPOVmD8fMLvXurBA==</latexit>

2
p
n

<latexit sha1_base64="g+fFUiQPr9x2nqHJnZkmZQJ4Yjo=">AAACMnicbVDLTgJBEJzFF+IL8OhlIjHxRHYJiRxJvHjERB4RNmR2aGDC7Ow602sgG/7Cq36FP6M349WPcFk4CFjJJJWq7unu8kIpDNr2h5XZ2d3bP8ge5o6OT07P8oViywSR5tDkgQx0x2MGpFDQRIESOqEG5nsS2t7kduG3n0EbEagHnIXg+mykxFBwhon0WKE986QxVvN+vmSX7RR0mzgrUiIrNPoFq9gbBDzyQSGXzJiuY4foxkyj4BLmuV5kIGR8wkbQTahiPhg3Tlee06tEGdBhoJOnkKbq346Y+cbMfC+p9BmOzaa3EP/zuhEOa24sVBghKL4cNIwkxYAu7qcDoYGjnCWEcS2SXSkfM804JimtTUn/DoGvXRJPIyV4MIANVeIUNVuk6Gxmtk1albJTLdfuq6V6bZVnllyQS3JNHHJD6uSONEiTcKLIC3klb9a79Wl9Wd/L0oy16jkna7B+fgGbzqtq</latexit>

p
n

<latexit sha1_base64="NNWQZ0wyzQNdMZP8L0uenrvxvNE=">AAACMHicbVDLTsJAFJ3iC/EFuHTTSExckdaQyJLEjUtM5JEAIdPpLUyYTuvMrYE0/IRb/Qq/RlfGrV9hW7oQ8CSTnJxz79x7jxMKrtGyPo3Czu7e/kHxsHR0fHJ6Vq5UuzqIFIMOC0Sg+g7VILiEDnIU0A8VUN8R0HNmd6nfewaleSAfcRHCyKcTyT3OKCZSf6ifFMZyOS7XrLqVwdwmdk5qJEd7XDGqQzdgkQ8SmaBaD2wrxFFMFXImYFkaRhpCymZ0AoOESuqDHsXZwkvzKlFc0wtU8iSamfq3I6a+1gvfSSp9ilO96aXif94gQq85irkMIwTJVoO8SJgYmOn1pssVMBSLhFCmeLKryaZUUYZJRmtTsr9DYGuXxPNIcha4sKEKnKOiaYr2ZmbbpHtTtxv15kOj1mrmeRbJBbkk18Qmt6RF7kmbdAgjgryQV/JmvBsfxpfxvSotGHnPOVmD8fMLvXurBA==</latexit>

c
p
n

<latexit sha1_base64="gKZIZiRaXyXJQGIPFLjmc5keuEo=">AAACMnicbVDLTsJAFJ3iC/EFuHQzkZi4Iq0xkSWJG5eYyCNCQ6bTC0yYTuvMrYE0/IVb/Qp/RnfGrR9hgS4EPMkkJ+fcO/fe40VSGLTtDyu3tb2zu5ffLxwcHh2fFEvllgljzaHJQxnqjscMSKGgiQIldCINLPAktL3x7dxvP4M2IlQPOI3ADdhQiYHgDFPpkdOeedKYqFm/WLGr9gJ0kzgZqZAMjX7JKvf8kMcBKOSSGdN17AjdhGkUXMKs0IsNRIyP2RC6KVUsAOMmi5Vn9CJVfDoIdfoU0oX6tyNhgTHTwEsrA4Yjs+7Nxf+8boyDmpsIFcUIii8HDWJJMaTz+6kvNHCU05QwrkW6K+UjphnHNKWVKYu/I+ArlySTWAke+rCmSpygZvMUnfXMNknrqupcV2v315V6LcszT87IObkkDrkhdXJHGqRJOFHkhbySN+vd+rS+rO9lac7Kek7JCqyfX/Q8q5s=</latexit>

⇥
c
p
n�

p
n, c

p
n
⇤

<latexit sha1_base64="4DzM7D3ExWGqpy3rCv3dtAQreeY=">AAACZ3icbVBdSxtBFJ1sv9R+GC1IoS/XhkIfbNgtggERhL74aMGokF3C7M3dZHB2dp25K4Ylv6a/xld96k/ov3ASg5jogYEz59w7d+5JS60ch+G/RvDq9Zu371ZW195/+PhpvbmxeeqKyiJ1sdCFPU+lI60MdVmxpvPSksxTTWfpxe+pf3ZF1qnCnPC4pCSXQ6MyhZK91G8exJoyhh7EO4AQu0vLtZnAz0e6AxDvx/uAj56/xFYNRwxJv9kK2+EM8JxEc9IScxz3Nxqb8aDAKifDqKVzvSgsOamlZYWaJmtx5aiUeCGH1PPUyJxcUs/2nMB3rwwgK6w/hmGmPu2oZe7cOE99ZS555Ja9qfiS16s46yS1MmXFZPBhUFZp4AKmocFAWULWY08kWuX/CjiSViL7aBemzN4uCRc2qa8ro7AY0JKq+ZqtnPgUo+XMnpPTX+1ot935s9s67MzzXBFfxTfxQ0RiTxyKI3EsugLFX3EjbsVd43+wHmwFXx5Kg8a857NYQLB9D3epuog=</latexit>

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

ALGORITHM DESIGN

‣ analysis of algorithms

‣ greed

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomization

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Greedy algorithms

Make locally optimal choices at each step.

Familiar examples.

独Huffman coding.

独Prim’s algorithm.

独Kruskal’s algorithm.

独Dijkstra’s algorithm.

More classic examples.

独Activity scheduling.

独A* search algorithm.

独Gale–Shapley stable marriage.

独...

Caveat. Greedy algorithm rarely leads to globally optimal solution.

 (but is often used anyway, especially for intractable problems)

12

COIN CHANGING PROBLEM AND CASHIER’S ALGORITHM

Goal. Given U. S. coin denominations { 1, 5, 10, 25, 100 },

devise a method to pay amount to customer using fewest coins.

Ex. 34¢.

Cashier’s (greedy) algorithm. Repeatedly add the coin of the largest value

that does not exceed the remaining amount to be paid.

Ex. $2.89.

13

6 coins

10 coins

Algorithm design: quiz 2

Is the cashier’s algorithm optimal for U.S. coin denominations?

A. Yes, greedy algorithms are always optimal.

B. Yes, for any set of coin denominations d1 < d2 < … < dn provided d1 = 1.

C. Yes, because of special properties of U.S. coin denominations.

D. No.

14

Properties of any optimal solution (for U.S. coin denominations)

Property 1. Number of pennies P ≤ 4.

Pf. Replace 5 pennies with 1 nickel.

Property 2. Number of nickels N ≤ 1.

Property 3. Number of dimes D ≤ 2.

Property 4. Number of quarters Q ≤ 3.

Property 5. N + D ≤ 2.

Pf.

独Properties 2 and 3: N ≤ 1 and D ≤ 2.

独Replace 2 dimes and 1 nickel with 1 quarter.

Property 6. P + 5 N + 10 D + 25 Q ≤ 99.

15

exchange argument

contributes

at most 4

contributes

at most 20

contributes

at most 75

Optimality of cashier’s algorithm (for U.S. coin denominations)

Proposition. Cashier’s algorithm yields unique optimal solution for denominations { 1, 5, 10, 25, 100 }.

Pf. [for dollar coins]

独Suppose we are changing amount $x.yz.

独Cashier’s algorithm takes x dollar coins.

独Suppose (for the sake of contradiction) that optimal solution does not take x dollar coins.

独Then, optimal solution satisfies P + 5 N + 10 D + 25 Q ≥ 100.

独This contradicts Property 6.

[similar arguments to justify greedy strategy for quarters, dimes, and nickels]

16

must make change for ≥ 100¢

using only pennies, nickels, dimes, and quarters

ALGORITHM DESIGN

‣ analysis of algorithms

‣ greed

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomization

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Network flow

Fundamental problems on edge-weighted graphs and digraphs.

Familiar examples.

独Shortest paths.

独Bipartite matching.

独Maxflow and mincut.

独Minimum spanning tree.

Other classic examples.

独Minimum-cost flow.

独Assignment problem.

独Non-bipartite matching.

独Minimum-cost arborescence.

独...

Applications. Many many problems can be modeled using network flow.

18

“reduction”

SHORTEST PATH WITH ORANGE AND BLACK EDGES

Goal. Given a digraph, where each edge has a positive weight and is orange or black,

find shortest path from s to t that uses at most k orange edges.

19

k = 0: s→1→t (17)
k = 1: s→3→t (13)
k = 2: s→2→3→t (11)
k = 3: s→2→1→3→t (10)
k = 4: s→2→1→3→t (10)

s

2 3

1G

t

8

21

4
3

9

7

10

Goal. Given a digraph, where each edge has a positive weight and is orange or black,

find shortest path from s to t that uses at most k orange edges.

SHORTEST PATH WITH ORANGE AND BLACK EDGES

Goal. Given a digraph, where each edge has a positive weight and is orange or black,

find shortest path from s to t that uses at most k orange edges.

Solution.

独Create k+1 copies of the vertices in digraph G, labeled G0, G1, …, Gk.

独For each black edge v→w : add edge from vertex v in graph Gi to vertex w in Gi.

独For each orange edge v→w : add edge from vertex v in graph Gi to vertex w in Gi+1.

独Compute shortest path from s to any copy of t.

20

s

2 3

1

t

s′

2′ 3′

1′

t′

s"

2" 3"

1"G0 G1 G2

k = 2

t"

8 8 8

2 2

s

2 3

1G

t

8

21

4 3

9

7

10

Algorithm design: quiz 3

What is worst-case running time of algorithm as a function of k, the number of vertices V, 
and the number of edges E? Assume E ≥ V.

A. Θ(E log V)

B. Θ(k E)

C. Θ(k E log V)

D. Θ(k2 E log V)

21

(k E) log ((k+1) V)

number

of edges

number

of vertices

Dijkstra: E log V

ALGORITHM DESIGN

‣ analysis of algorithms

‣ greed

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomization

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Dynamic programming

独Break up problem into a series of overlapping subproblems.

独Build up solutions to larger and larger subproblems.

(caching solutions to subproblems in a table for later reuse)

Familiar examples.

独Shortest paths in DAGs.

独Seam carving.

独Bellman–Ford.

More classic examples.

独Unix diff.

独Viterbi algorithm for hidden Markov models.

独CKY algorithm for parsing context-free grammars.

独Needleman–Wunsch/Smith–Waterman for DNA sequence alignment.

独...

23

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time / is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic ; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

I t is abundantly clear from the very brief description of possible
applications tha t the problems arising from the study of these
processes are problems of the future as well as of the immediate
present.

Turning to a more precise discussion, let us introduce a small
amount of terminology. A sequence of decisions will be called a
policy, and a policy which is most advantageous according to some
preassigned criterion will be called an optimal policy.

The classical approach to the mathematical problems arising from
the processes described above is to consider the set of all possible

An address delivered before the Summer Meeting of the Society in Laramie on
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An-
nual and Summer meetings; received by the editors August 27,1954.

503

Richard Bellman, *46

EGG DROP (REVISITED)

Goal. Given m eggs and n floors, find threshold floor using the fewest drops.

24

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

threshold floor

EGG DROP (REVISITED)

Goal. Given m eggs and n floors, find threshold floor using the fewest drops.

Subproblems. OPT(i, j) = fewest drops with i eggs and j contiguous floors to check.

Optimal value. OPT(m, n).

Multiway choice. To compute OPT(i, j), drop next egg on some floor x between 1 and j.

独Breaks: use fewest drops given i − 1 eggs and x − 1 floors.

独Does not break: use fewest drops given i eggs and j − x floors.

Dynamic programming recurrence.

25

for a given floor x,
take worst of

two possibilities

optimal substructure

best over all x

only number of contiguous floors to check matters

(not that they are between 1 and j)

<latexit sha1_base64="lga2LCqqVRAOxmDjtmllJ2HFtRo=">AAADZnicbVLdbtMwGHVWfkaBsQ0hLrj5RAVaRVslwGBStWmCG+4o0rpNqqvKcdzOreNEsTOlsvIyPA23cMcb8BjYWUC0xVKU4/Od7zjficNUcKV9/6e31bh1+87d7XvN+w8e7jza3ds/V0meUTakiUiyy5AoJrhkQ821YJdpxkgcCnYRLj66+sU1yxRP5Jlepmwck5nkU06JttRkz+t/Hpwd8A7M24D7x7jfxCGbcWmoNVVlE/dhDvASsGaFBgN8CiVwOIYAMB713rF47DT+hmZuNf6KBsdcYsFjrtXEYJWHShO6MPhapYQy0/PfHHJZ2hbn3QEsmHsVf/C8tLUPfIaNZSxnRX14BZUxsaqwKrl9NVE3cKKiG7Q7fznHzLtFu2py+tqx3BzwxPnXFJFRNdAJ+Bg3MZNRnc5kt+X3/GrBJghq0EL1Gti493GU0DxmUlNBlBoFfqrHhmSaU8Fs3LliNo0FmbGRhZLETI1N9ZtLeGGZCKZJZh+poWL/7TAkVmoZh1YZE32l1muO/F9tlOvp0dhwmeaaSXpz0DQXoBNwdwYinjGqxdICQjNuvxXoFckI1fZmrZxSeaeMrkxiilxymkRsjRW60BlxKQbrmW2C89e94LDnf3nbOj2q89xGz9BzdIAC9B6dok9ogIaIel+9b95378fWr8ZO40nj6Y10y6t7HqOV1YDfTjoEkw==</latexit>

OPT (i, j) =

8
>>>><

>>>>:

j B7 i = 1

0 B7 j = 0

min
1 xj

n
1 + max

�
OPT (i� 1, x� 1), OPT (i, j � x)

 o
B7 i > 1 �M/ j > 0

COIN CHANGING: BOTTOM-UP IMPLEMENTATION

Bottom-up DP implementation.

26

// drops[i][j] = min number of drops with i eggs and j floors
int[][] drops = new int[eggs+1][floors+1];

// base cases
for (int j = 1; j <= floors; j++) drops[1][j] = j;
for (int i = 1; i <= eggs; i++) drops[i][0] = 0;

// dynamic programming recurrence
for (int i = 2; i <= eggs; i++) {
 for (int j = 1; j <= floors; j++) {
 drops[i][j] = Integer.MAX_VALUE;
 for (int x = 1; x <= j; x++) {
 int temp = 1 + Math.max(drops[i-1][x-1], drops[i][j-x]);
 drops[i][j] = Math.min(temp, drops[i][j]);
 }
 }
}

drop # floor
1 14

2 27

3 39

4 50

5 60

6 69

7 77

8 84

9 90

10 95

11 99

12 100

m = 2 eggs, n = 100 floors
(max number of drops = 14)

drop first egg on these floors

(until it breaks)

Algorithm design: quiz 4

What is running time of algorithm as a function of the number of eggs m 
and the number of floors n?

A. Θ(m + n)

B. Θ(m n)

C. Θ(m n2)

D. Θ(m2 n)

27

Θ(m n) subproblems

each subproblem involves

a min of up to n things

ALGORITHM DESIGN

‣ analysis of algorithms

‣ greed

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomization

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Divide and conquer

独Break up problem into two or more independent subproblems.

独Solve each subproblem recursively.

独Combine solutions to subproblems to form solution to original problem.

Familiar examples.

独Mergesort.

独Quicksort.

More classic examples.

独Closest pair.

独Convolution and FFT.

独Matrix multiplication.

独Integer multiplication.

…

Prototypical usage. Turn brute-force Θ(n2) algorithm into Θ(n log n) one.

29

needs to take COS 226?

ALGORITHM DESIGN

‣ analysis of algorithms

‣ greed

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomization

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Randomized algorithms

Algorithm whose performance (or output) depends on the results of random coin flips.

Familiar examples.

独Quicksort.

独Quickselect.

More classic examples.

独Miller–Rabin primality testing.

独Rabin–Karp substring search.

独Polynomial identity testing.

独Volume of convex body.

独Universal hashing.

独Global min cut.

…

36

NUTS AND BOLTS

Problem. A disorganized carpenter has a mixed pile of n nuts and n bolts.

独The goal is to find the corresponding pairs of nuts and bolts.

独Each nut fits exactly one bolt; each bolt fits exactly one nut.

独By fitting a nut and a bolt together, the carpenter can determine which is bigger.

Brute-force algorithm. Compare each bolt to each nut: Θ(n2) compares.

Challenge. Design an algorithm that makes O(n log n) compares.

37

but cannot directly compare

two nuts or two bolts

NUTS AND BOLTS

Shuffle. Shuffle the nuts and bolts.

Partition.

独Pick leftmost bolt i and compare against all nuts;

divide nuts smaller than i from those that are larger than i.

独Let i ʹ be the nut that matches bolt i. Compare i ʹ against all bolts;

divide bolts smaller than i ʹ from those that are larger than i ʹ.

Divide-and-conquer. Recursively solve two subproblems.
38

3 0 1 4 2 5 6 9 8 7bolts

2′ 1′ 4′ 0′ 3′ 5′ 7′ 8′ 9′ 6′nuts

5 3 6 0 9 1 4 8 2 7

7′ 2′ 8′ 1′ 5′ 9′ 4′ 0′ 6′ 3′

bolts

nuts

smaller nuts larger nuts

smaller bolts larger bolts

Algorithm design: quiz 6

What is the expected running time of algorithm as a function of n?

A. Θ(n)

B. Θ(n log n)

C. Θ(n log2 n)

D. Θ(n2)

39

same analysis as quicksort

(but ~ 2n compares per partition instead of ~ n)

ALGORITHM DESIGN

‣ analysis of algorithms

‣ greed

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomization

‣ credits

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Credits

Faculty senior staff

Precept facilitators, undergrad graders, and lab TAs. Apply to be one next semester!

Ed tech. Several developed here at Princeton!

44

and graduate student AIs.

A final thought

45

A farewell video (from P04, Fall 2018)

A final thought

46

“ Algorithms and data structures are love.

 Algorithms and data structures are life. ”

 — anonymous COS 226 student

